The tool orientation of a flat-end cutter, determined by the lead and tilt angles of the cutter, can be optimized to increase the machining strip width. However, few studies focus on the effects of tool orientation on the five-axis milling process stability with flat-end cutters. Stability prediction starts with cutting force prediction, and the cutting force prediction is affected by the cutter-workpiece engagement (CWE). The engagement geometries occur between the flat-end cutter and the in-process workpiece (IPW) are complicated in five-axis milling, making the stability analysis for five-axis flat-end milling difficult. The robust discrete vector method (DVM) is adopted to identify the CWE for flat-end millings, and it can be extended to apply to general cutter millings. The milling system is then modeled as a two-degrees-of-freedom spring-mass-damper system with the predicted cutting forces. Thereafter, a general formulation for the dynamic milling system is developed considering the regenerative effect and the mode coupling effect simultaneously. Finally, an enhanced numerical integration method (NIM) is developed to predict the stability limits in flat-end milling with different tool orientations. Effectiveness of the strategy is validated by conducting experiments on five-axis flat-end milling.

References

References
1.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
.
2.
Wang
,
S. B.
,
Geng
,
L.
,
Zhang
,
Y. F.
,
Liu
,
K.
, and
Ng
,
T.
,
2015
, “
Chatter-Free Cutter Postures in Five-Axis Machining
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
8
), p.
0954405415615761
.
3.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.
4.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.-Manuf. Technol.
,
44
(
1
), pp.
357
362
.
5.
Altintaş
,
Y.
, and
Lee
,
P.
,
1996
, “
A General Mechanics and Dynamics Model for Helical End Mills
,”
CIRP Ann.-Manuf. Technol.
,
45
(
1
), pp.
59
64
.
6.
Altıntaş
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.
7.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
.
8.
Ding
,
Y.
,
Zhu
,
L. M.
,
Zhang
,
X. J.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
9.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.
10.
Yang
,
Y.
,
Zhang
,
W. H.
,
Wan
,
M.
, and
Ma
,
Y. C.
,
2013
, “
A Solid Trimming Method to Extract Cutter–Workpiece Engagement Maps for Multi-Axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2801
2813
.
11.
Geng
,
L.
,
Liu
,
P. L.
, and
Liu
,
K.
,
2015
, “
Optimization of Cutter Posture Based on Cutting Force Prediction for Five-Axis Machining With Ball-End Cutters
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1289
1303
.
12.
Zhou
,
X.
,
Zhang
,
D. H.
,
Luo
,
M.
, and
Wu
,
B. H.
,
2015
, “
Chatter Stability Prediction in Four-Axis Milling of Aero-Engine Casings With Bull-Nose End Mill
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1766
1773
.
13.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
14.
Budak
,
E.
,
Ozturk
,
E.
, and
Tunc
,
L. T.
,
2009
, “
Modeling and Simulation of 5-Axis Milling Processes
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
347
350
.
15.
Tunç
,
L. T.
,
Ozkirimli
,
O. M.
, and
Budak
,
E.
,
2016
, “
Machining Strategy Development and Parameter Selection in 5-Axis Milling Based on Process Simulations
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1483
1500
.
16.
Tunc
,
L. T.
,
Budak
,
E.
,
Bilgen
,
S.
, and
Zatarain
,
M.
,
2016
, “
Process Simulation Integrated Tool Axis Selection for 5-Axis Tool Path Generation
,”
CIRP Ann.-Manuf. Technol.
,
65
(
1
), pp.
381
384
.
17.
Tunc
,
L. T.
,
Ozkirimli
,
O.
, and
Budak
,
E.
,
2015
, “
Generalized Cutting Force Model in Multi-Axis Milling Using a New Engagement Boundary Determination Approach
,”
Int. J. Adv. Manuf. Technol.
,
77
(
1
), pp.
341
355
.
18.
Merdol
,
S.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
19.
Tobias
,
S.
, and
Fishwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
(
7
), pp.
199
203
.
20.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
Int. Res. Prod. Eng.
,
1
(
1
), pp.
465
474
.
21.
Zhang
,
X. J.
,
Xiong
,
C. H.
,
Ding
,
Y.
,
Feng
,
M. J.
, and
Xiong
,
Y. L.
,
2012
, “
Milling Stability Analysis With Simultaneously Considering the Structural Mode Coupling Effect and Regenerative Effect
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
127
140
.
22.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
23.
Aras
,
E.
, and
Albedah
,
A.
,
2014
, “
Extracting Cutter/Workpiece Engagements in Five-Axis Milling Using Solid Modeler
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1351
1362
.
24.
Park
,
J. W.
,
Shin
,
Y. H.
, and
Chung
,
Y. C.
,
2005
, “
Hybrid Cutting Simulation Via Discrete Vector Model
,”
Comput.-Aided Des.
,
37
(
4
), pp.
419
430
.
25.
Zhu
,
L. M.
,
Zheng
,
G.
, and
Ding
,
H.
,
2009
, “
Formulating the Swept Envelope of Rotary Cutter Undergoing General Spatial Motion for Multi-Axis NC Machining
,”
Int. J. Mach. Tools Manuf.
,
49
(
2
), pp.
199
202
.
26.
Zhu
,
L. M.
,
Zhang
,
X. M.
,
Zheng
,
G.
, and
Ding
,
H.
,
2009
, “
Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041017
.
27.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer
,
New York
.
28.
Insperger
,
T.
,
Muñoa
,
J.
,
Zatarain
,
M.
, and
Peigné
,
G.
,
2006
, “
Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle
,”
CIRP
-
International Conference on High Performance Cutting
, p.
10
.
29.
Zatarain
,
M.
,
Muñoa
,
J.
,
Peigné
,
G.
, and
Insperger
,
T.
,
2006
, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
CIRP Ann.-Manuf. Technol.
,
55
(
1
), pp.
365
368
.
30.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer Science & Business Media
,
Berlin
.
31.
Rubeo
,
M. A.
, and
Schmitz
,
T. L.
,
2016
, “
Mechanistic Force Model Coefficients: A Comparison of Linear Regression and Nonlinear Optimization
,”
Prec. Eng.
,
45
, pp.
311
321
.
32.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
33.
Cao
,
H. R.
,
Li
,
B.
, and
He
,
Z. J.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
34.
Grossi
,
N.
,
Sallese
,
L.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2014
, “
Chatter Stability Prediction in Milling Using Speed-Varying Cutting Force Coefficients
,”
Proc. CIRP
,
14
, pp.
170
175
.
35.
Grossi
,
N.
,
Sallese
,
L.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2015
, “
Speed-Varying Cutting Force Coefficient Identification in Milling
,”
Prec. Eng.
,
42
, pp.
321
334
.
36.
Rubeo
,
M. A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Force Modeling: A Comparison of Two Approaches
,”
Proc. Manuf.
,
5
, pp.
90
105
.
37.
Campatelli
,
G.
, and
Scippa
,
A.
,
2012
, “
Prediction of Milling Cutting Force Coefficients for Aluminum 6082-T4
,”
Proc. CIRP
,
1
, pp.
563
568
.
You do not currently have access to this content.