Abrasive flow finishing (AFF) is one of the advanced finishing processes used mainly for finishing of complex surface features. Nano finishing of aluminum alloys is difficult using conventional finishing processes because of its soft nature. So, in this work, aluminum alloys are finished using AFF process. Since the finishing is carried out using polymer rheological abrasive medium (medium), the finishing forces on aluminum alloy workpieces are too low compared to conventional finishing processes. Thus, this process generates nano surface roughness on aluminum alloy. By using the theoretical model, change in surface roughness (ΔRa) with respect to various AFF input parameters is studied. A new simulation model is proposed in this paper to predict the finishing forces and ΔRa during AFF process. Modeling of finishing forces generated during the AFF process is carried out using ansys polyflow. These forces are used as input in the simulation model to predict ΔRa. Medium rheology decides the magnitude of the generated finishing forces in AFF process. Therefore, to predict the forces accurately, rheological properties of the medium are measured experimentally and used as input during modeling. Further, to make the simulation more realistic, abrasive particle bluntness with respect to extrusion pressure and number of strokes is considered. Because of considering these realistic conditions, simulation and experimental results are in better agreement compared to theoretical results.

References

1.
Rhoades
,
L.
,
1991
, “
Abrasive Flow Machining: A Case Study
,”
J. Mater. Process. Technol.
,
28
(
1–2
), pp.
107
116
.
2.
Loveless
,
T. R.
,
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1994
, “
A Study of the Effects of Abrasive-Flow Finishing on Various Machined Surfaces
,”
J. Mater. Process. Technol.
,
47
(
1
), pp.
133
151
.
3.
Williams
,
R. E.
, and
Rajurkar
,
K. P.
,
1992
, “
Stochastic Modeling and Analysis of Abrasive Flow Machining
,”
ASME J. Eng. Ind.
,
114
(
1
), pp.
74
81
.
4.
Williams
,
R. E.
,
1998
, “
Acoustic Emission Characteristics of Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
264
271
.
5.
Jain
,
V. K.
, and
Adsul
,
S. G.
,
2000
, “
Experimental Investigations Into Abrasive Flow Machining (AFM)
,”
Int. J. Mach. Tools Manuf.
,
40
(
7
), pp.
1003
1021
.
6.
Raju
,
H. P.
,
Narayanasamy
,
K.
,
Srinivasa
,
Y. G.
, and
Krishnamurthy
,
R.
,
2005
, “
Characteristics of Extrude Honed SG Iron Internal Primitives
,”
J. Mater. Process. Technol.
,
166
(
3
), pp.
455
464
.
7.
Sankar
,
M. R.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2010
, “
Rotational Abrasive Flow Finishing (R-AFF) Process and Its Effects on Finished Surface Topography
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
637
650
.
8.
Raju
,
H. P.
,
Devadath
,
V. R.
, and
Krishna
,
N. M.
,
2013
, “
Extrusion Honed Surface Characteristics of Inconel 600
,”
Int. J. Eng. Res. Appl.
,
3
(6), pp.
1338
1343
.
9.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1903
1923
.
10.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2004
, “
Experimental Investigation Into Cutting Forces and Active Grain Density During Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
201
211
.
11.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
, “
Forces Prediction During Material Deformation in Abrasive Flow Machining
,”
Wear
,
260
(
1
), pp.
128
139
.
12.
Jain
,
R. K.
, and
Jain
,
V. K.
,
1999
, “
Simulation of Surface Generated in Abrasive Flow Machining Process
,”
Rob. Comput. Integr. Manuf.
,
15
(
5
), pp.
403
412
.
13.
Jain
,
R. K.
, and
Jain
,
V. K.
,
2004
, “
Stochastic Simulation of Active Grain Density in Abrasive Flow Machining
,”
J. Mater. Process. Technol.
,
152
(
1
), pp.
17
22
.
14.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
,“
Prediction of Surface Roughness During Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
31
(
3–4
), pp.
258
267
.
15.
Jain
,
R. K.
, and
Jain
,
V. K.
,
2003
, “
Finite Element Simulation of Abrasive Flow Machining
,”
Proc. Inst. Mech. Eng. Part B
,
217
(
12
), pp.
1723
1736
.
16.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P. K.
,
2006
, “
Finite Element Analysis of Media Used in the Centrifugal Force Assisted Abrasive Flow Machining Process
,”
Proc. Inst. Mech. Eng. Part B
,
220
(
11
), pp.
1775
1785
.
17.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
,
2012
, “
Computational Fluid Dynamics Simulation and Experimental Investigations Into the Magnetic-Field-Assisted Nano-Finishing Process
,”
Proc. Inst. Mech. Eng. Part B
,
226
(
7
), pp.
1143
1158
.
18.
Chen
,
K. Y.
, and
Cheng
,
K. C.
,
2014
, “
A Study of Helical Passageways Applied to Polygon Holes in Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
781
790
.
19.
Wan
,
S.
,
Ang
,
Y. J.
,
Sato
,
T.
, and
Lim
,
G. C.
,
2014
, “
Process Modeling and CFD Simulation of Two-Way Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1077
1086
.
20.
Hull
,
J. B.
,
Fletcher
,
A. J.
,
Trengove
,
S. A.
, and
Mackie
,
J.
,
1992
, “
Rheology of Carrier Media Used in Abrasive Flow Machining
,”
Key Eng. Mater.
,
72–74
, pp.
617
626
.
21.
Wang
,
A. C.
,
Liu
,
C. H.
,
Liang
,
K. Z.
, and
Pai
,
S. H.
,
2007
, “
Study of the Rheological Properties and the Finishing Behavior of Abrasive Gels in Abrasive Flow Machining
,”
J. Mech. Sci. Technol.
,
21
(
10
), pp.
1593
1598
.
22.
Wang
,
A. C.
, and
Weng
,
S. H.
,
2007
, “
Developing the Polymer Abrasive Gels in AFM Process
,”
J. Mater. Process. Technol.
,
192–193
, pp.
486
490
.
23.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailor
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Preferential Media for Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011009
.
24.
Sankar
,
M. R.
,
Jain
,
V. K.
,
Ramkumar
,
J.
, and
Joshi
,
Y. M.
,
2011
, “
Rheological Characterization of Styrene-Butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
947
957
.
25.
Giesekus
,
H.
,
1982
, “
A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation-Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
,
11
(
1–2
), pp.
69
109
.
26.
Baaijens
,
F. P.
,
1998
, “
Mixed Finite Element Methods for Viscoelastic Flow Analysis: A Review
,”
J. Non-Newtonian Fluid Mech.
,
79
(
2
), pp.
361
385
.
27.
Singh
,
S.
,
Raj
,
A. A.
,
Sankar
,
M. R.
, and
Jain
,
V. K.
,
2016
, “
Finishing Force Analysis and Simulation of Nanosurface Roughness in Abrasive Flow Finishing Process Using Medium Rheological Properties
,”
Int. J. Adv. Manuf. Technol.
,
85
(9), pp.
2163
2178
.
28.
Sankar
,
M. R.
,
Ramkumar
,
J.
, and
Jain
,
V. K.
,
2009
, “
Experimental Investigation and Mechanism of Material Removal in Nano Finishing of MMCs Using Abrasive Flow Finishing (AFF) Process
,”
Wear
,
266
(
7
), pp.
688
698
.
You do not currently have access to this content.