The stability lobe diagrams predicted using the tool frequency response function (FRF) at the idle state usually have discrepancies compared with the actual stability cutting boundary. These discrepancies can be attributed to the effect of spindle rotating on the tool FRFs which are difficult to measure at the rotating state. This paper proposes a new tool FRF identification method without using noncontact sensor for the rotating state of the spindle. In this method, the FRFs with impact applied on smooth rotating tool and vibration response tested on spindle head are measured for two tools of different lengths clamped in spindle–holder assembly. Based on those FRFs, an inverse receptance coupling substructure analysis (RCSA) algorithm is developed to identify the FRFs of spindle–holder–partial tool assembly. A finite-element modeling (FEM) simulation is performed to verify the validity of inverse RCSA algorithm. The tool point FRFs at the spindle rotating state are obtained by coupling the FRFs of the spindle–holder–partial tool and the other partial tool. The effects of spindle rotational speed on tool point FRFs are investigated. The cutting experiment demonstrates that this method can accurately identify the tool point FRFs and predict cutting stability region under spindle rotating state.

Reference

Reference
1.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.
2.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
.
3.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2015
, “
In-Process Tool Point FRF Identification Under Operational Conditions Using Inverse Stability Solution
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
64
73
.
4.
Gagnol
,
V.
,
Le
,
T. P.
, and
Ray
,
P.
,
2011
, “
Modal Identification of Spindle-Tool Unit in High-Speed Machining
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2388
2398
.
5.
Shin
,
Y. C.
,
1992
, “
Bearing Nonlinearity and Stability Analysis in High Speed Machining
,”
ASME J. Eng. Ind.
,
114
(
1
), pp.
23
30
.
6.
Tounsi
,
N.
, and
Otho
,
A.
,
2000
, “
Identification of Machine-Tool-Workpiece System Dynamics
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1367
1384
.
7.
Özsahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2011
, “
Investigating Dynamics of Machine Tool Spindles Under Operational Conditions
,”
Adv. Mater. Res.
,
223
, pp.
610
621
.
8.
Li
,
B.
,
Cai
,
H.
,
Mao
,
X.
,
Huang
,
J.
, and
Luo
,
B.
,
2013
, “
Estimation of CNC Machine-Tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
26
40
.
9.
Cai
,
H.
,
Mao
,
X.
,
Li
,
B.
, and
Luo
,
B.
,
2015
, “
Estimation of FRFs of Machine Tools in Output-Only Modal Analysis
,”
Int. J. Adv. Manuf. Technol.
,
77
(
1–4
), pp.
117
130
.
10.
Zaghbani
,
I.
, and
Songmene
,
V.
,
2009
, “
Estimation of Machine-Tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
947
957
.
11.
Mohanty
,
P.
, and
Rixen
,
D. J.
,
2004
, “
Operational Modal Analysis in the Presence of Harmonic Excitation
,”
J. Sound Vib.
,
270
(
1–2
), pp.
93
109
.
12.
Tatar
,
K.
,
Rantatalo
,
M.
, and
Gren
,
P.
,
2007
, “
Laser Vibrometry Measurements of an Optically Smooth Rotating Spindle
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1739
1745
.
13.
Tatar
,
K.
, and
Gren
,
P.
,
2008
, “
Measurement of Milling Tool Vibrations During Cutting Using Laser Vibrometry
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
380
387
.
14.
Rantatalo
,
M.
,
Aidanpää
,
J. O.
, and
Göransson
,
B. P.
,
2007
, “
Milling Machine Spindle Analysis Using FEM and Non-Contact Spindle Excitation and Response Measurement
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1034
1045
.
15.
Faassen
,
R. P. H.
,
Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
,
2003
, “
Prediction of Regenerative Chatter by Modelling and Analysis of High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1437
1446
.
16.
Albrecht
,
A.
,
Park
,
S. S.
,
Altintas
,
Y.
, and
Pritschow
,
G.
,
2005
, “
High Frequency Bandwidth Cutting Force Measurement in Milling Using Capacitance Displacement Sensors
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
993
1008
.
17.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
18.
Cheng
,
C. H.
,
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
433
446
.
19.
Matsubara
,
A.
,
Tsujimoto
,
S.
, and
Kono
,
D.
,
2015
, “
Evaluation of Dynamic Stiffness of Machine Tool Spindle by Non-Contact Excitation Tests
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
365
368
.
20.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Model-Based Chatter Stability Prediction for High-Speed Spindles
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1176
1186
.
21.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Stability-Based Spindle Design Optimization
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
407
415
.
22.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2015
, “
Identification of Bearing Dynamics Under Operational Conditions for Chatter Stability Prediction in High Speed Machining Operations
,”
Precis. Eng.
,
42
, pp.
53
65
.
23.
Schmitz
,
T. L.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
303
308
.
24.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
700
707
.
25.
Park
,
S. S.
,
Altintas
,
Y.
, and
Movahhedy
,
M.
,
2003
, “
Receptance Coupling for End Mills
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
889
896
.
26.
Mancisidor
,
I.
,
Urkiola
,
A.
,
Barcena
,
R.
,
Munoa
,
J.
,
Dombovari
,
Z.
, and
Zatarain
,
M.
,
2014
, “
Receptance Coupling for Tool Point Dynamic Prediction by Fixed Boundaries Approach
,”
Int. J. Mach. Tools Manuf.
,
78
, pp.
18
29
.
27.
Ertürk
,
A.
,
Özgüven
,
H. N.
, and
Budak
,
E.
,
2007
, “
Effect Analysis of Bearing and Interface Dynamics on Tool Point FRF for Chatter Stability in Machine Tools by Using a New Analytical Model for Spindle-Tool Assemblies
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
23
32
.
28.
Tang
,
X.
,
Peng
,
F.
,
Yan
,
R.
,
Gong
,
Y.
,
Li
,
Y.
, and
Jiang
,
L.
,
2016
, “
Accurate and Efficient Prediction of Milling Stability With Updated Full-Discretization Method
,”
Int. J. Adv. Manuf. Technol.
(online).
You do not currently have access to this content.