This work presents an automated fabric layup solution based on a new method to deform fiberglass fabric, referred to as shifting, for the layup of noncrimp fabric (NCF) plies. The shifting method is intended for fabric with tows only in 0 deg (warp) and 90 deg (weft) directions, where the fabric is sequentially constrained and then rotated through a deformation angle to approximate curvature. Shifting is conducted in a two-dimensional (2D) plane, making the process easy to control and automate, but can be applied for fabric placement in three-dimensional (3D) models, either directly or after a ply kitting process and then manually placed. Preliminary tests have been conducted to evaluate the physical plausibility of the shifting method. Layup tests show that shifting can deposit fabric accurately and repeatedly while avoiding out-of-plane deformation.

References

References
1.
Caduff
,
M.
,
Huijbregts
,
M. A. J.
,
Althaus
,
H.-J.
,
Koehler
,
A.
, and
Hellweg
,
S.
,
2012
, “
Wind Power Electricity: The Bigger the Turbine, the Greener the Electricity?
,”
Environ. Sci. Technol.
,
46
(
9
), pp.
4725
4733
.
2.
SIEMENS
,
2012
, “
Wind Turbine With the World's Largest Rotor Goes Into Operation
,” Munich, Germany, http://www.siemens.com/press/en/feature/2012/energy/2012-07-rotorblade.php
3.
Abraham
,
D.
,
Matthews
,
S.
, and
McIlhagger
,
R.
,
1998
, “
A Comparison of Physical Properties of Glass Fibre Epoxy Composites Produced by Wet Lay-Up With Autoclave Consolidation and Resin Transfer Moulding
,”
Compos. Part A: Appl. Sci. Manuf.
,
29
(
7
), pp.
795
801
.
4.
Debout
,
P.
,
Chanal
,
H.
, and
Duc
,
E.
,
2011
, “
Tool Path Smoothing of a Redundant Machine: Application to Automated Fiber Placement
,”
Comput. Aided Des.
,
43
(
2
), pp.
122
132
.
5.
Gardiner
,
G.
,
2011
, “
A350 XWB update: Smart Manufacturing
,”
High-Performance Composites
,
Gardner Business Media
, Cincinnati, OH.
6.
Anderson
,
R. L.
, and
Grant
,
C. G.
,
1991
, “
Advanced Fiber Placement of Composite Fuselage Structures
,”
First NASA Advanced Composites Technology Conference—Part 2
, NASA, Langley, VA, pp.
817
830
.
7.
Grant
,
C. G.
, and
Benson
,
V. M.
,
1993
, “
Automated Fiber Placement: Evolution and Current Demonstrations
,”
Third NASA Advanced Composites Technology Conference—Part 2
, vol.
1
, NASA, Langley, VA, pp.
625
648
.
8.
Lukaszewicz
,
D. H. J. A.
,
Ward
,
C.
, and
Potter
,
K. D.
,
2012
, “
The Engineering Aspects of Automated Prepreg Layup: History, Present and Future
,”
Compos. Part B: Eng.
,
43
(
3
), pp.
997
1009
.
9.
Crossley
,
R.
,
Schubel
,
P.
, and
Warrior
,
N.
,
2010
, “
Automated Tape Layup (ATL) of Wind Energy Grade Prepreg Materials
,”
European Wind Energy Conference and Exhibition
, Warsaw, Poland, April 20–23.
10.
Black
,
S.
,
2009
, “
Automating Wind Blade Manufacture
,”
Composites Technology
, e-pub.
11.
Stephenson
,
S.
,
2011
, “
Wind blade manufacture: Opportunities and Limits
,”
CompositesWorld's Wind and Ocean Energy Seminar
, Portland, ME, April 13–14.
12.
Watson
,
J. C.
, and
Serrano
,
W. J.
,
2010
, “
Composite Materials for Wind Blades
,”
Wind Systems
,
September
, pp. 46–51.
13.
Kordi
,
M. T.
,
Husing
,
M.
, and
Corves
,
B.
,
2007
, “
Development of a Multifunctional Robot End-Effector System for Automated Manufacture of Textile Preforms
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
, Zürich, Switzerland, Sept. 4–7.
14.
Kim
,
B. C.
,
Potter
,
K.
, and
Weaver
,
P. M.
,
2012
, “
Continuous Tow Shearing for Manufacturing Variable Angle Tow Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
43
(
8
), pp.
1347
1356
.
15.
Kim
,
B. C.
,
Weaver
,
P. M.
, and
Potter
,
K.
,
2014
, “
Manufacturing Characteristics of the Continuous Tow Shearing Method for Manufacturing of Variable Angle Tow Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
61
, pp.
141
151
.
16.
Kim
,
B. C.
,
Weaver
,
P. M.
, and
Potter
,
K.
,
2015
, “
Computer Aided Modelling of Variable Angle Tow Composites Manufactured by Continuous Tow Shearing
,”
Compos. Struct.
,
129
, pp.
256
267
.
17.
Magnussen
,
C. J.
,
2011
, “
A Fabric Deformation Methodology for the Automation of Fiber Reinforced Polymer Composite Manufacturing
,” M.Sc. thesis, Iowa State University, Ames, IA.
18.
McBride
,
T. M.
, and
Chen
,
J.
,
1997
, “
Unit-Cell Geometry in Plain-Weave Fabrics During Shear Deformations
,”
Compos. Sci. Technol.
,
57
(
3
), pp.
345
351
.
19.
Potluri
,
P.
,
Sharma
,
S.
, and
Ramgulam
,
R.
,
2001
, “
Comprehensive Drape Modelling for Moulding 3D Textile Preforms
,”
Compos. Part A: Appl. Sci. Manuf.
,
32
(
10
), pp.
1415
1424
.
20.
Yu
,
W.-R.
,
Harrison
,
P.
, and
Long
,
A.
,
2005
, “
Finite Element Forming Simulation for Non-Crimp Fabrics Using a Non-Orthogonal Constitutive Equation
,”
Compos. Part A: Appl. Sci. Manuf.
,
36
(
8
), pp.
1079
1093
.
21.
Yu
,
J. Z.
,
Cai
,
Z.
, and
Ko
,
F. K.
,
1994
, “
Formability of Textile Preforms for Composite Applications. Part 1: Characterization Experiments
,”
Compos. Manuf.
,
5
(
2
), pp.
113
122
.
22.
Potluri
,
P.
,
Perez Ciurezu
,
D. A.
, and
Ramgulam
,
R. B.
,
2006
, “
Measurement of Meso-Scale Shear Deformations for Modelling Textile Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
2
), pp.
303
314
.
23.
Nguyen
,
M.
,
Herszberg
,
I.
, and
Paton
,
R.
,
1999
, “
The Shear Properties of Woven Carbon Fabric
,”
Compos. Struct.
,
47
(
1–4
), pp.
767
779
.
24.
Mohammed
,
U.
,
Lekakou
,
C.
,
Dong
,
L.
, and
Bader
,
M. G.
,
2000
, “
Shear Deformation and Micromechanics of Woven Fabrics
,”
Compos. Part A: Appl. Sci. Manuf.
,
31
(
4
), pp.
299
308
.
25.
Johanns
,
W.
,
2012
, “
The Effect of Tow Grouping Resolution on Shearing Deformation of Unidirectional Non-Crimp Fabric
,” M.Sc., Iowa State University, Ames, IA.
26.
FUJI
,
2011
, “
LX-30 High Speed 3-Axis Gantry Robot
,” Chiryu, Japan, accessed Nov. 22, 2016, http://www.fujimachine.com/pdfs/csd_options.pdf
27.
CMA/Flodyne/Hydradyne
,
2013
, “
High Speed Gantry—CMAFH eNewsletter
,” Hanover Park, IL, accessed Nov. 22. 2016, http://www.cmafh.com/enewsletter/enewseditions/November_eNewsletter_2013.html
28.
Wang
,
J.
,
Page
,
J. R.
, and
Paton
,
R.
,
1998
, “
Experimental Investigation of the Draping Properties of Reinforcement Fabrics
,”
Compos. Sci. Technol.
,
58
(
2
), pp.
229
237
.
You do not currently have access to this content.