Experimental investigations of process emissions from atomic layer deposition (ALD) of Al2O3 are accomplished under various temperatures and purge times to understand its environmental sustainability performance. About 93% of Trimethylaluminum (TMA) is found flowing through ALD system without deposition. 2–9 × 104 of ultrafine nanoparticles containing 51.9 ± 4.6% of C, 16.6 ± 0.9% of Al, 31.4 ± 4.1% of O are generated during each cycle of reactions. 0.34–0.38 cm3 of CH4 (25 °C, 1 atm), which takes up 45–51% of C contained in TMA is produced simultaneously. The concentration of nanoparticles drops with the increase of purge time. CH4 also has a trend of decreasing but acts more complex with the largest emission at a short purge time. Compared with temperature, which has limited effects on reactants, purge time changes the time of reaction as well as the degree of gas phase mixing, and therefore greatly influences ALD emissions.

References

References
1.
George
,
S.
,
2010
, “
Atomic Layer Deposition: An Overview
,”
Chem. Rev.
,
110
(
1
), pp.
111
131
.
2.
Gao
,
X.
,
Guan
,
D.
,
Huo
,
J.
,
Chen
,
J.
, and
Yuan
,
C.
,
2013
, “
Free Standing TiO2 Nanotube Array Electrodes With an Ultra-Thin Al2O3 Barrier Layer and TiCl4 Surface Modification for Highly Efficient Dye Sensitized Solar Cells
,”
Nanoscale
,
5
(
21
), pp.
10438
10446
.
3.
Gao
,
X.
,
Chen
,
J.
, and
Yuan
,
C.
,
2013
, “
Enhancing the Performance of Free-Standing TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells Via Ultraprecise Control of the Nanotube Wall Thickness
,”
J. Power Sources
,
240
(
15
), pp.
503
509
.
4.
Guan
,
D.
,
Jeevarajan
,
J.
, and
Wang
,
Y.
,
2011
, “
Enhanced Cycleability of LiMn2O4 Cathodes by Atomic Layer Deposition of Nanosized-Thin Al2O3 Coatings
,”
Nanoscale
,
3
(
4
), pp.
1465
1469
.
5.
Guan
,
D.
, and
Wang
,
Y.
,
2013
, “
Ultrathin Surface Coatings to Enhance Cycling Stability of LiMn2O4 Cathode in Lithium-Ion Batteries
,”
Ionics
,
19
(
1
), pp.
1
8
.
6.
Lu
,
J.
,
Fu
,
B.
,
Kung
,
M. C.
,
Xiao
,
G.
,
Elam
,
J. W.
,
Kung
,
H. H.
, and
Stair
,
P. C.
,
2012
, “
Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition
,”
Science
,
335
(
6073
), pp.
1205
1208
.
7.
Sneh
,
O.
,
Clark-Phelps
,
R. B.
,
Londergan
,
A. R.
,
Winkler
,
J.
, and
Seidel
,
T.
,
2002
, “
Thin Film Atomic Layer Deposition Equipment for Semiconductor Processing
,”
Thin Solid Films
,
402
(
1
), pp.
248
261
.
8.
Huang
,
M. L.
,
Chang
,
Y. C.
,
Chang
,
C. H.
,
Lee
,
Y. J.
,
Chang
,
P.
,
Kwo
,
J.
,
Wu
,
T. B.
, and
Hong
,
M.
,
2005
, “
Surface Passivation of III-V Compound Semiconductors Using Atomic-Layer-Deposition-Grown Al2O3
,”
Appl. Phys. Lett.
,
87
(
25
), p.
252104
.
9.
Lee
,
S.
,
Pippel
,
E.
, and
Knez
,
M.
,
2011
, “
Metal Infiltration Into Biomaterials by ALD and CVD: A Comparative Study
,”
ChemPhysChem
,
12
(
4
), pp.
791
798
.
10.
Sundqvist
,
J.
,
Lu
,
J.
,
Ottosson
,
M.
, and
Hårsta
,
A.
,
2006
, “
Growth of SnO2 Thin Films by Atomic Layer Deposition and Chemical Vapour Deposition: A Comparative Study
,”
Thin Solid Films
,
514
(
1
), pp.
63
68
.
11.
Green
,
M. A.
,
2005
, “
Hydrogen Safety Issues Compared To Safety Issues With Methane and Propane
,”
Cryogenic Engineering Conference
, Keystone, CO, Aug. 29–Sep. 2, pp.
319
326
.
12.
Payam
,
N.
,
Fatemeh
,
J.
,
Mohammad
,
M. T.
,
Mohammad
,
G.
, and
Muhd Zaimi
,
A. M.
,
2015
, “
A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (With an Overview of the Top Ten CO2 Emitting Countries)
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
843
862
.
13.
Lu
,
J.
,
Zahedi
,
A.
,
Yang
,
S.
,
Wang
,
M.
, and
Peng
,
B.
,
2013
, “
Building the Hydrogen Economy in China: Drivers, Resources and Technologies
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
543
556
.
14.
Pachauri
,
R. K.
,
Allen
,
M. R.
,
Barros
,
V. R.
,
Broome
,
J.
,
Cramer
,
W.
,
Christ
,
R.
, and
Dubash
,
N. K.
,
2014
, “
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,” IPCC, Report No. 4, p.
44
.
15.
Howarth
,
R. W.
,
Santoro
,
R.
, and
Ingraffea
,
A.
,
2011
, “
Methane and the Greenhouse-Gas Footprint of Natural Gas From Shale Formations
,”
Clim. Change
,
106
(
4
), pp.
679
690
.
16.
Forster
,
P.
,
Ramaswamy
,
V.
,
Artaxo
,
P.
,
Berntsen
,
T.
,
Betts
,
R.
,
Fahey
,
D. W.
,
Haywood
,
J.
,
Lean
,
J.
,
Lowe
,
D. C.
,
Myhre
,
G.
,
Nganga
,
J.
,
Prinn
,
R.
,
Raga
,
G.
,
Schulz
,
M.
, and
Van Dorland
,
R.
,
2007
, “
Changes in Atmospheric Constituents and in Radiative Forcing
,”
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
S.
Solomon
,
D.
Qin
,
M.
Manning
,
Z.
Chen
,
M.
Marquis
,
K. B.
Averyt
,
M.
Tignor
, and
H. L.
Miller
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
210
216.
17.
Shine
,
K. P.
,
Fuglestvedt
,
J. S.
,
Hailemariam
,
K.
, and
Stuber
,
N.
,
2005
, “
Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases
,”
Clim. Change
,
68
(
3
), pp.
281
302
.
18.
Milich
,
L.
,
1999
, “
The Role of Methane in Global Warming: Where Might Mitigation Strategies be Focused
,”
Global Environmental Change
,
9
(
3
), pp.
179
201
.
19.
Ma
,
L.
,
Pan
,
D.
,
Xie
,
Y.
, and
Yuan
,
C.
,
2015
, “
Atomic Layer Deposition of Al2O3 Process Emissions
,”
RSC Adv.
,
17
, pp.
12824
12829
.
20.
Pöschl
,
U.
,
2005
, “
Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects
,”
Angew. Chem. Int. Ed.
,
44
(
46
), pp.
7520
7540
.
21.
Albanese
,
A.
,
Tang
,
P. S.
, and
Chan
,
W.
,
2012
, “
The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
1
16
.
22.
Oberdörster
,
G.
,
Oberdörster
,
E.
, and
Oberdörster
,
J.
,
2005
, “
Nanotoxicology: An Emerging Discipline Evolving From Studies of Ultrafne Particles
,”
Environ. Health Perspect.
,
113
(
7
), pp.
823
839
.
23.
Becaria
,
A.
,
Campbell
,
A.
, and
Bondy
,
S. C.
,
2002
, “
Aluminum as a Toxicant
,”
Toxicol. Ind. Health
,
18
(
7
), pp.
309
320
.
24.
Lin
,
W.
,
Stayton
,
I.
,
Huang
,
Y.
,
Zhou
,
X.
, and
Ma
,
Y.
,
2008
, “
Cytotoxicity and Cell Membrane Depolarization Induced by Aluminum Oxide Nanoparticles in Human Lung Epithelial Cells A549
,”
Toxicol. Environ. Chem.
,
90
(
5
), pp.
983
996
.
25.
Krewski
,
D.
,
Yokel
,
R. A.
,
Nieboer
,
E.
,
Borchelt
,
D.
,
Cohen
,
J.
,
Harry
,
J.
,
Kacew
,
S.
,
Lindsay
,
J.
,
Mahfouz
,
A. M.
, and
Rondeau
,
V.
,
2007
, “
Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide
,”
J. Toxicol. Environ. Health Part B
,
10
(
s1
), pp.
1
269
.
26.
Ganrot
,
P. O.
,
1986
, “
Metabolism and Possible Health Effects of Aluminum
,”
Environ. Health Perspect.
,
65
, pp.
363
441
.
27.
Klein
,
G.
,
1998
, “
Metabolic Bone Disease of Total Parenteral Nutrition
,”
Nutrition
,
14
(
1
), pp.
149
152
.
28.
Fewtrell
,
M. S.
,
Bishop
,
N. J.
,
Edmonds
,
C. J.
,
Isaacs
,
E. B.
, and
Lucas
,
A. L.
,
2009
, “
Aluminum Exposure From Parenteral Nutrition in Preterm Infants: Bone Health at 15-Year Follow-up
,”
Pediatrics
,
124
(
5
), pp.
1372
1709
.
29.
Xie
,
Y.
,
Ma
,
L.
,
Pan
,
D.
, and
Yuan
,
C.
,
2015
, “
Mechanistic Modeling of Atomic Layer Deposition of Alumina Process With Detailed Surface Chemical Kinetics
,”
Chem. Eng. J.
,
259
(
1
), pp.
213
220
.
30.
Hoex
,
B.
,
Schmidt
,
J.
,
Pohl
,
P.
,
Van de Sanden
,
M. C. M.
, and
Kessels
,
W. M. M.
,
2008
, “
Silicon Surface Passivation by Atomic Layer Deposited Al2O3
,”
J. Appl. Phys.
,
104
(
4
), p.
044903
.
31.
Gutiérrez
,
G.
, and
Johansson
,
B.
,
2002
, “
Molecular Dynamics Study of Structural Properties of Amorphous Al2O3
,”
Phys. Rev. B
,
65
(
10
), p.
104202
.
32.
Groner
,
M. D.
,
Fabreguette
,
F. H.
,
Elam
,
J. W.
, and
George
,
S. M.
,
2004
, “
Low-Temperature Al2O3 Atomic Layer Deposition
,”
Chem. Mater.
,
16
(
4
), pp.
639
645
.
33.
Travis
,
C. D.
, and
Adomaitis
,
R. A.
,
2013
, “
Modeling ALD Surface Reaction and Process Dynamics Using Absolute Reaction Rate Theory
,”
Chem. Vap. Deposition
,
19
(
1–3
), pp.
4
14
.
34.
Puurunen
,
R. L.
,
Lindblad
,
M.
,
Rootc
,
A.
, and
Krause
,
A. O.
,
2001
, “
Successive Reactions of Gaseous Trimethylaluminium and Ammonia on Porous Alumina
,”
Phys. Chem. Chem. Phys.
,
3
(
6
), pp.
1093
1102
.
35.
Yuan
,
C.
, and
Dornfeld
,
D.
,
2010
, “
Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030918
.
36.
Bzdek
,
B. R.
,
Ross Pennington
,
M.
, and
Johnston
,
M. V.
,
2012
, “
Single Particle Chemical Analysis of Ambient Ultrafine Aerosol: A Review
,”
J. Aerosol Sci.
,
52
, pp.
109
120
.
37.
Reche
,
C.
,
Viana
,
M.
,
Brines
,
M.
,
Pérez
,
N.
,
Beddows
,
D.
,
Alastuey
,
A.
, and
Querol
,
X.
,
2015
, “
Determinants of Aerosol Lung-Deposited Surface Area Variation in an Urban Environment
,”
Sci. Total Environ.
,
517
(
1
), pp.
38
47
.
38.
Reche
,
C.
,
Querol
,
X.
,
Alastuey
,
A.
,
Viana
,
M.
,
Pey
,
J.
,
Moreno
,
T.
,
Rodríguez
,
S.
,
González
,
Y.
,
Fernández-Camacho
,
R.
,
Sánchez de la Campa
,
A. M.
,
de la Rosa
,
J.
,
Dall'Osto
,
M.
,
Prévôt
,
A. S. H.
,
Hueglin
,
C.
,
Harrison
,
R. M.
, and
Quincey
,
P.
,
2011
, “
New Consideration for PM, Black Carbon and Particle Number Concentration for Air Quality Monitoring Across Different European Cities
,”
Atmos. Chem. Phys.
,
11
(
13
), pp.
6207
6227
.
39.
Kang
,
H.
,
Zhu
,
B.
,
Su
,
J.
,
Wang
,
H.
,
Zhang
,
Q.
, and
Wang
,
F.
,
2013
, “
Analysis of a Long-Lasting Haze Episode in Nanjing, China
,”
Atmos. Res.
,
120–121
, pp.
78
87
.
40.
Kupc
,
A.
,
Bischof
,
O.
,
Tritscher
,
T.
,
Beeston
,
M.
,
Krinke
,
T.
, and
Wagner
,
P.
,
2013
, “
Laboratory Characterization of a New Nano-Water-Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3776
,”
Aerosol Sci. Technol.
,
47
(
2
), pp.
183
191
.
41.
Bischof
,
O. F.
,
Zerrath
,
A. F.
,
Shi
,
Q.
,
Han
,
H.-S.
,
Kerrigan
,
S. W.
, and
Johnson
,
E. M.
,
2005
, “
Evaluation and Performance Characterization of a New Ultrafine Condensation Particle Counter
,”
NOSA Aerosol Symposium
, Göteborg, Sweden, Nov. 3–4.
42.
Mordas
,
G.
,
Manninen
,
H. E.
,
Petäjä
,
T.
,
Aalto
,
P. P.
,
Hämeri
,
K.
, and
Kulmala
,
M.
,
2008
, “
On Operation of the Ultra-Fine Water-Based CPC TSI3786 and Comparison With Other TSI Models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007)
,”
Aerosol Sci. Technol.
,
42
(
2
), pp.
152
158
.
43.
Pan
,
D.
,
Li
,
T.
,
Jen
,
T.
, and
Yuan
,
C.
,
2014
, “
Numerical Modeling of Carrier Gas Flow in Atomic Layer Deposition Vacuum Reactor: A Comparative Study of Lattice Boltzmann Models
,”
J. Vac. Sci. Technol. A
,
32
(
1
), p.
01A110
.
44.
Swihart
,
M.
,
2003
, “
Vapor-Phase Synthesis of Nanoparticles
,”
Curr. Opin. Colloid Interface Sci.
,
8
(
1
), pp.
127
133
.
45.
Kruis
,
F.
,
Fissan
,
H.
, and
Peled
,
A.
,
1998
, “
Synthesis of Nanoparticles in the Gas Phase for Electronic Optical and Magnetic Applications—A Review
,”
J. Aerosol Sci.
,
29
(
5
), pp.
511
535
.
46.
Eggerdorfer
,
M.
, and
Partsinis
,
S.
,
2014
, “
Agglomerates and Aggregates of Nanoparticles Made in the Gas Phase
,”
Adv Powder Technol.
,
25
(
1
), pp.
71
90
.
47.
Augenbraun
,
H.
,
Matthews
,
E.
, and
Sarma
,
D.
,
2010
, “
The Global Methane Cycle
,” GISS Institute on Climate and Planets, New York, accessed Jan. 2017, http://icp.giss.nasa.gov/education/methane/intro/cycle.html
48.
Stocker
,
T. F.
,
Qin
,
D.
,
Plattner
,
G. K.
,
Tignor
,
M.
,
Allen
,
S. K.
,
Boschung
,
J.
,
Nauels
,
A.
,
Xia
,
Y.
,
Bex
,
V.
, and
Midgley
,
P. M.
,
2014
,
Climate Change 2013: The Physical Science Basis
,”
Cambridge University Press
,
Cambridge, UK
.
49.
Castellano
,
R.
,
2016
, “
Thin Film Deposition Trends, Key Issues, Market Analysis
,” The Information Network, New Tripolo, PA, accessed Jan. 2017, http://www.theinformationnet.com/thin_film.html
50.
Yun
,
S. J.
,
Lee
,
K.
,
Skarp
,
J.
,
Kim
,
H.
, and
Nam
,
K.
,
1993
, “
Dependence of Atomic Layer-Deposited Al2O3 Films Characteristics on Growth Temperature and Al Precursors of Al(CH3)3 and AlCl3
,”
J. Vac. Sci. Technol. A
,
15
(
6
), pp.
2993
2997
.
51.
Wind
,
R. A.
, and
George
,
S. M.
,
2010
, “
Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125 °C
,”
J. Phys. Chem. A
,
114
(
3
), pp.
1281
1289
.
52.
Dillon
,
A. C.
,
Ott
,
A. W.
,
Way
,
J. D.
, and
George
,
S. M.
,
1995
, “
Surface Chemistry of Al2O3 Deposition Using Al(CH3)3 and H2O in a Binary Reaction Sequence
,”
Surf. Sci.
,
322
(
1–3
), pp.
230
242
.
53.
Richter
,
A.
,
Benick
,
J.
,
Hermle
,
M.
, and
Glunz
,
S. W.
,
2014
, “
Reaction Kinetics During the Thermal Activation of the Silicon Surface Passivation With Atomic Layer Deposited Al2O3
,”
Appl. Phys. Lett.
,
104
(
6
), p.
061606
.
54.
van Hemmen
,
J. L.
,
Heil
,
S. B. S.
,
Klootwijk
,
J. H.
,
Roozeboom
,
F.
,
Hodson
,
C. J.
,
Van de Sanden
,
M. C. M.
, and
Kessels
,
W. M. M.
,
2007
, “
Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor
,”
J. Electrochem. Soc.
,
154
(
7
), pp.
G165
G169
.
55.
Puurunen
,
R. L.
,
2005
, “
Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process
,”
J. Appl. Phys.
,
97
(
12
), p.
121301
.
You do not currently have access to this content.