In milling of flexible workpieces, like axial-flow compressor impellers with thin-wall blades and deep channels, interference occurrence between workpiece and tool shaft is a great adverse issue. Even though interference avoidance plays a mandatory role in tool path generation stage, the generated tool path remains just a nominally interference-free one. This challenge is attributed to the fact that workpiece flexibility and dynamic response cannot be considered in tool path generation stage. This paper presents a strategy in process parameters planning stage, aiming to avoid the interference between tool shaft and flexible workpiece with dynamic response in milling process. The interference problem is formulated as that to evaluate the approaching extent of two surfaces, i.e., the vibrating workpiece and the swept envelope surface generated by the tool undergoing spatial motions. A metric is defined to evaluate quantitatively the approaching extent. Then, a minimax optimization model is developed, in which the optimization objective is to maximize the metric, so as the interference-free can be guaranteed while constraints require the milling process to be stable and process parameters to fall into preferred intervals in which material removal rate is satisfactory. Finish milling of impeller using a conical cutter governed by a nominally interference-free tool path is numerically simulated to illustrate the dynamics responses of the spatially distributed nodal points on the thin-wall blade and approaching extent of the time-varying vibrating blades to the tool swept envelope surface. Furthermore, the present model results suggest to use an optimal process parameters set in finish milling, as a result improving machining efficiency in addition to ensuring the interference-free requirement. The model results are verified against milling experiments.

References

References
1.
Tsai
,
J.-S.
, and
Liao
,
C.-L.
,
1999
, “
Finite-Element Modeling of Static Surface Errors in the Peripheral Milling of Thin-Walled Workpieces
,”
J. Mater. Process. Technol.
,
94
(
2
), pp.
235
246
.
2.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2004
, “
Milling Error Prediction and Compensation in Machining of Low-Rigidity Parts
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1629
1641
.
3.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2004
, “
A Flexible Force Model for End Milling of Low-Rigidity Parts
,”
J. Mater. Process. Technol.
,
153–154
, pp.
134
138
.
4.
Kang
,
Y.-G.
, and
Wang
,
Z.-Q.
,
2013
, “
Two Efficient Iterative Algorithms for Error Prediction in Peripheral Milling of Thin-Walled Workpieces Considering the In-Cutting Chip
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
55
61
.
5.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2006
, “
An Advanced FEA Based Force Induced Error Compensation Strategy in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
542
551
.
6.
Qin
,
G. H.
,
Zhang
,
W. H.
,
Wu
,
Z. X.
, and
Wan
,
M.
,
2007
, “
Systematic Modeling of Workpiece-Fixture Geometric Default and Compliance for the Prediction of Workpiece Machining Error
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
789
801
.
7.
Wan
,
M.
,
Zhang
,
W. H.
,
Qin
,
G. H.
, and
Wang
,
Z. P.
,
2008
, “
Strategies for Error Prediction and Error Control in Peripheral Milling of Thin-Walled Workpiece
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1366
1374
.
8.
Chaves-Jacob
,
J.
,
Poulachon
,
G.
, and
Duc
,
E.
,
2012
, “
Optimal Strategy for Finishing Impeller Blades Using 5-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
58
(
5–8
), pp.
573
583
.
9.
Lartigue
,
C.
,
Duc
,
E.
, and
Affouard
,
A.
,
2003
, “
Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface
,”
Comput. Aided Des.
,
35
(
4
), pp.
375
382
.
10.
Thevenot
,
V.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Cazenave-Larroche
,
G.
,
2006
, “
Integration of Dynamic Behaviour Variations in the Stability Lobes Method: 3D Lobes Construction and Application to Thin-Walled Structure Milling
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
638
644
.
11.
Bravo
,
U.
,
Altuzarra
,
O.
,
López De Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Campa
,
F. J.
,
2005
, “
Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1669
1680
.
12.
Mañé
,
I.
,
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2008
, “
Stability-Based Spindle Speed Control During Flexible Workpiece High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
184
194
.
13.
Adetoro
,
O. B.
,
Sim
,
W. M.
, and
Wen
,
P. H.
,
2010
, “
An Improved Prediction of Stability Lobes Using Nonlinear Thin Wall Dynamics
,”
J. Mater. Process. Technol.
,
210
(
6
), pp.
969
979
.
14.
Seguy
,
S.
,
Dessein
,
G.
, and
Arnaud
,
L.
,
2008
, “
Surface Roughness Variation of Thin Wall Milling, Related to Modal Interactions
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
261
274
.
15.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.
16.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling—Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
.
17.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
18.
Marcotte
,
P.
, and
Dussault
,
J.
,
1989
, “
A Sequential Linear Programming Algorithm for Solving Monotone Variational Inequalities
,”
SIAM J. Control Optim.
,
27
(
6
), pp.
1260
1278
.
19.
Zhu
,
L. M.
,
Xiong
,
Z. H.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2004
, “
A Distance Function Based Approach for Localization and Profile Error Evaluation of Complex Surface
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
542
554
.
20.
Zhu
,
L.
,
Zhang
,
X.-M.
,
Zheng
,
G.
, and
Ding
,
H.
,
2009
, “
Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041017
.
21.
Oden
,
J. T.
,
Duarte
,
C. A. M.
, and
Zienkiewicz
,
O. C.
,
1998
, “
A New Cloud-Based HP Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
153
(
1
), pp.
117
126
.
22.
Zhang
,
X.-M.
,
Zhu
,
L.-M.
, and
Ding
,
H.
,
2010
, “
Matrix Perturbation Method for Predicting Dynamic Modal Shapes of the Workpiece in High-Speed Machining
,”
Proc. Inst. Mech. Eng., Part B
,
224
(
1
), pp.
177
183
.
23.
Lee
,
P.
, and
Altintaş
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
24.
Huang
,
T.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2013
, “
Decoupled Chip Thickness Calculation Model for Cutting Force Prediction in Five-Axis Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1203
1217
.
25.
Carcaterra
,
A.
, and
D'Ambrogio
,
W.
,
1995
, “
An Iterative Rational Fraction Polynomial Technique for Modal Identification
,”
Meccanica
,
30
(
1
), pp.
63
75
.
26.
Zhang
,
X.-M.
,
Zhu
,
L. M.
,
Zhang
,
D.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2012
, “
Numerical Robust Optimization of Spindle Speed for Milling Process With Uncertainties
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
9
19
.
You do not currently have access to this content.