The manufacturing industry contributes over 19% to the world's greenhouse gas emissions (U.S. Energy Information Administration, 2008, “Rep: Annual Energy Review 2008,” Report No. DOE/EIA-0384; Diaz et al., 2010, “Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments,” 2010 IEEE International Symposium on Sustainable Systems and Technology.) and 31% of the total energy consumed annually in the U.S. (Herzog, T., 2005, “World Greenhouse Gas Emissions in 2005,” World Resources Institute, Washington, DC 2; Diaz et al., 2010, “Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments,” 2010 IEEE International Symposium on Sustainable Systems and Technology.). There is therefore an increasing demand for sustainable solutions for the production technology industry. At the Technische Universitat (TU) Berlin, Germany, a collaborative research center (CRC) is focusing on new solutions for the sustainable machining of high performance alloys, with developments from machine tool frames to cutting tool technology being undertaken. An innovative machine tool concept with a modular frame, which allows a high level of flexibility, has been developed. Furthermore, add-on upgrading systems for older machine tools, which are particularly relevant for developing countries, have been developed. These systems allow the accuracy of outdated machine tools to be increased, thus making the machine tools comparable to modern systems. Finally the cutting process also requires solutions for dry machining, as the use of cooling lubricant is environmentally damaging and a significant cost contributor in machining processes. Two solutions are being developed at the TU Berlin: an internally cooled cutting tool and a heating concept for ceramic tools to allow dry machining of high temperature alloys, for example, for the aerospace industry.

References

References
1.
U.S. Energy Information Administration
,
2008
, “
Rep: Annual Energy Review 2008
,” Report No. DOE/EIA-0384.
2.
Diaz
,
N.
,
Helu
,
M.
,
Jayanathan
,
Y.
, Chen Y.,
Horvath
,
A.
, and
Dornfeld
,
D.
,
2010
, “
Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments
,” 2010
IEEE
International Symposium on Sustainable Systems and Technology
.
3.
Herzog
,
T.
,
2005
, “
World Greenhouse Gas Emissions in 2005
,”
World Resources Institute
,
Washington, DC
.
4.
IEA
,
2007
, “
Tracking Industrial Energy Efficiency and CO2 Emission
,”
OECD/IEA
, Paris.
5.
Mehrabi
,
M. G.
, and
Ulsoy
,
A. G.
,
1997
, “
State-of-the-Art in Reconfigurable Machining Systems
,” University of Michigan, Ann Arbor, MI, ERC/RMS Technical Report 2.
6.
Landers
,
R. G.
,
Min
,
B.-K.
, and
Koren
,
Y.
,
2001
, “
Reconfigurable Machine Tools
,”
Ann. CIRP
,
50
(
1
), pp.
269
274
.
7.
Denkena
,
B.
,
Harms
,
A.
,
Jacobsen
,
J.
,
Möhring
,
H.-C.
,
Jungk
,
A.
, and
Noske
,
H.
,
2006
, “
Lebenszyklusorientierte Werkzeugmaschinenentwicklung
,”
wt Werkstattstech. Online
,
96
(
7–8
), pp.
441
446
.
8.
Ersal
,
T.
,
Stein
,
J. L.
, and
Louca
,
L. S.
,
2004
, “
A Modular Modelling Approach for the Design of Reconfigurable Machine Tools
,”
ASME
Paper No. IMECE2004-59806.
9.
Koenigsberger
,
F.
,
1961
,
Berechnungen, Konstruktionsgrundlagen und Bauelemente Spanender Werkzeugmaschinen
,
Springer-Verlag
,
Berlin
, pp.
223
225
.
10.
Peukert
,
B.
,
Mewis
,
J.
,
Saoji
,
M.
,
Uhlmann
,
E.
,
Benecke
,
S.
,
Thomasius
,
R.
,
Nissen
,
N. F.
, and
Lang
,
K.-D.
,
2013
, “
Microsystem Enhanced Machine Tool Structures to Support Sustainable Value Creation
,”
11th Global Conference on Sustainable Manufacturing
, Berlin, Sept. 23–25, pp.
580
585
.
11.
Uhlmann
,
E.
,
Saoji
,
M.
, and
Peukert
,
B.
,
2014
, “
An Evaluation of Building Sets Designed for Modular Machine Tool Structures to Support Sustainable Manufacturing
,”
Procedia CIRP
,
26
, pp.
612
617
.
12.
Uhlmann
,
E.
, and
Peukert
,
B.
,
2015
, “
Erhöhen der Dämpfung hohler Leichtbaustrukturen
,”
wt Werkstattstech. Online
,
105
(
7–8
), pp.
446
450
.
13.
Uhlmann
,
E.
,
Saoji
,
M.
, and
Peukert
,
B.
,
2014
, “
Optimierte Sensorplatzierung in Mess-Netzwerken
,”
wt Werkstattstech. Online
,
104
(
5
), pp.
266
271
.
14.
Bryan
,
J.
,
1990
, “
International Status of Thermal Error Research
,”
CIRP Ann.-Manuf. Technol.
,
39
(
2
), pp.
645
656
.
15.
Peukert
,
B.
,
Benecke
,
S.
,
Clavell
,
J.
,
Neugebauer
,
S.
,
Nissen
,
N. F.
,
Uhlmann
,
E.
,
Lang
,
K.-D.
, and
Finkbeiner
,
M.
,
2015
, “
Addressing Sustainability and Flexibility in Manufacturing Via Smart Modular Machine Tool Frames to Support Sustainable Value Creation
,”
Procedia CIRP
,
29
, pp.
514
519
.
16.
Uhlmann
,
E.
, and
Kianinejad
,
K.
,
2013
, “
Investigation of the Upgrading Potentials of Out-of-Date Cutting Machine Tools to Promote Sustainable and Global Value Creation
,”
11th Global Conference on Sustainable Manufacturing
, G. Seliger, ed., TU Berlin, Berlin, pp.
574
579
.
17.
Allwood
,
A.
, and
Gutowski
,
W.
,
2010
, “
Material Efficiency
,” A White Paper.
18.
Kianinejad
,
K.
,
Thom
,
S.
,
Kushwaha
,
S.
, and
Uhlmann
,
E.
,
2015
, “
Add-on Error Compensation Unit as Sustainable Solution for Outdated Milling Machines
,”
13th Global Conference on Sustainable Manufacturing
, pp.
174
178
.
19.
Kianinejad
,
K.
,
Uhlmann
,
E.
, and
Peukert
,
B.
,
2015
, “
Investigation Into Energy Efficiency of Outdated Cutting Machine Tools and Identification of Improvement Potentials to Promote Sustainability
,”
Procedia CIRP
,
26
, pp.
533
538
.
20.
Brinksmeier
,
E.
,
Meyer
,
D.
,
Huesmann-Cordes
,
A. G.
, and
Hermann
,
C.
,
2015
, “
Metalworking Fluids—Mechanisms and Performance
,”
CIRP Ann.-Manuf. Technol.
,
64
(
2
), pp.
605
628
.
21.
Byrne
,
G.
,
Dornfeld
,
D.
, and
Denkena
,
B.
,
2003
, “
Advancing Cutting Technology
,”
Ann. CIRP
,
52
(
2
), pp.
483
507
.
22.
Klocke
,
F.
, and
Eisenblätter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann.-Manuf. Technol.
,
46
(
2
), pp.
519
526
.
23.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
63
(
2
), pp.
561
583
.
24.
Jeffries
,
N. P.
, and
Zerkle
,
R. D.
,
1970
, “
Thermal Analysis of an Internally-Cooled Metal-Cutting Tool
,”
Int. J. Mach. Tool Des. Res.
,
10
(
3
), pp.
381
399
.
25.
Frost
,
T.
,
2009
, “
Drehen mit geschlossenem Innenkühlsystem
,”
Berichte aus dem Produktionstechnischen Zentrum Berlin
,
E.
Uhlmann
, ed.,
Fraunhofer IRB
,
Stuttgart, Germany
.
26.
Rozzi
,
J. C.
,
Sanders
,
J. K.
, and
Chen
,
W.
,
2011
, “
The Experimental and Theoretical Evaluation of an Indirect Cooling System for Machining
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031006
.
27.
Uhlmann
,
E.
,
Fürstmann
,
P.
,
Roeder
,
M.
,
Richarz
,
S.
, and
Sammler
,
F.
,
2012
, “
Tool Wear Behaviour of Internally Cooled Tools at Different Cooling Liquid Temperatures
,”
10th Global Conference on Sustainable Manufacturing
, G. Seliger and S. E. Kılıç, eds., Berlin, pp. 9–97.
28.
Uhlmann
,
E.
,
Fürstmann
,
P.
,
Rosenau
,
B.
,
Gebhard
,
S.
,
Gerstenberger
,
R.
, and
Müller
,
G.
,
2013
, “
The Potential of Reducing the Energy Consumption for Machining TiAl6V4 by Using Innovative Metal Cutting Processes
,”
11th Global Conference on Sustainable Manufacturing
, G. Seliger, ed., Universitätsverlag, Berlin, pp.
646
651
.
29.
Ward
,
H.
,
Burger
,
M.
,
Chang
,
Y.-J.
,
Fürstmann
,
P.
,
Neugebauer
,
S.
,
Radebach
,
A.
,
Sproesser
,
G.
,
Pittner
,
A.
,
Rethmeier
,
M.
,
Uhlmann
,
E.
, and
Steckel
,
J. C.
,
2016
, “
Assessing Carbon Dioxide Emission Reduction Potentials of Improved Manufacturing Processes Using Multiregional Input Output Frameworks
,”
J. Cleaner Prod.
(in press).
30.
Giegrich
,
J.
,
Liebich
,
A.
,
Lauwigi
,
C.
, and
Reinhardt
,
J.
,
2012
, “
Indikatoren/Kennzahlen für den Rohstoffverbrauch im Rahmen der Nachhaltigkeitsdiskussion
,”
Umweltbundesamt
, Dessau-Roßlau, Germany.
31.
Karpuschewski
,
B.
,
Kalhöfer
,
E.
,
Joswig
,
D.
, and
Rief
,
M.
,
2011
, “
Energiebedarf bei der Herstellung von Hartmetall-Wendeschneidplatten
,”
ZWF
,
106
(
9
), pp.
602
605
.
You do not currently have access to this content.