Optimizing the energy consumption of robot movements has been one of the main focuses for most of today's robotic simulation software. This optimization is based on minimizing a robot's joint movements. In many cases, it does not take into consideration the dynamic features. Therefore, reducing energy consumption is still a challenging task and it involves studying the robot's kinematic and dynamic models together with application requirements. This research aims to minimize the robot energy consumption during assembly. Given a trajectory and based on the inverse kinematics and dynamics of a robot, a set of attainable configurations for the robot can be determined, perused by calculating the suitable forces and torques on the joints and links of the robot. The energy consumption is then calculated for each configuration and based on the assigned trajectory. The ones with the lowest energy consumption are selected. Given that the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be embedded in energy-efficient robotic assembly.

References

1.
Okwudire
,
C.
, and
Rodgers
,
J.
,
2013
, “
Design and Control of a Novel Hybrid Feed Drive for High Performance and Energy Efficient Machining
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
391
394
.
2.
Liu
,
Z.
,
Bu
,
W.
, and
Tan
,
J.
,
2010
, “
Motion Navigation for Arc Welding Robots Based on Feature Mapping in a Simulation Environment
,”
Rob. Comput.-Integr. Manuf.
,
26
(
2
), pp.
137
144
.
3.
Saravanan
,
R.
,
Ramabalan
,
S.
, and
Balamurugan
,
C.
,
2009
, “
Evolutionary Multi-Criteria Trajectory Modeling of Industrial Robots in the Presence of Obstacles
,”
Eng. Appl. Artif. Intell.
,
22
(
2
), pp.
329
342
.
4.
de Santos
,
P. G.
,
Garcia
,
E.
,
Ponticelli
,
R.
, and
Armada
,
M.
,
2009
, “
Minimizing Energy Consumption in Hexapod Robots
,”
Adv. Rob.
,
23
(
6
), pp.
681
704
.
5.
Vanderborght
,
B.
,
Tsagarakis
,
N. G.
,
Van Ham
,
R.
,
Thorson
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
MACCEPA 2.0: Compliant Actuator Used for Energy Efficient Hopping Robot Chobino1D
,”
Auton. Rob.
,
31
(
1
), pp.
55
65
.
6.
Rahimifard
,
S.
,
Seow
,
Y.
, and
Childs
,
T.
,
2010
, “
Minimising Embodied Product Energy to Support Energy Efficient Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
25
28
.
7.
Weinert
,
N.
,
Chiotellis
,
S.
, and
Seliger
,
G.
,
2011
, “
Methodology for Planning and Operating Energy-Efficient Production Systems
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
41
44
.
8.
Mourtzis
,
D.
,
Vlachou
,
E.
,
Xanthopoulos
,
N.
,
Givehchi
,
M.
, and
Wang
,
L.
,
2016
, “
Cloud-Based Adaptive Process Planning Considering Availability and Capabilities of Machine Tools
,”
J. Manuf. Syst.
,
39
, pp.
1
8
.
9.
Wang
,
L.
,
2013
, “
Machine Availability Monitoring and Machining Process Planning Towards Cloud Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
4
), pp.
263
273
.
10.
Mori
,
M.
,
Fujishima
,
M.
,
Inamasu
,
Y.
, and
Oda
,
Y.
,
2011
, “
A Study on Energy Efficiency Improvement for Machine Tools
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
145
148
.
11.
Bi
,
Z. M.
, and
Wang
,
L.
,
2012
, “
Optimization of Machining Processes From the Perspective of Energy Consumption—A Case Study
,”
J. Manuf. Syst.
,
31
(
4
), pp.
420
428
.
12.
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2010
, “
Automated Energy Monitoring of Machine Tools
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
21
24
.
13.
Behrendt
,
T.
,
Zein
,
A.
, and
Min
,
S.
,
2012
, “
Development of an Energy Consumption Monitoring Procedure for Machine Tools
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
43
46
.
14.
Peng
,
T.
,
Xu
,
X.
, and
Wang
,
L.
,
2014
, “
A Novel Energy Demand Modelling Approach for CNC Machining Based on Function Blocks
,”
J. Manuf. Syst.
,
33
(
1
), pp.
196
208
.
15.
Bi
,
Z. M.
, and
Wang
,
L.
,
2012
, “
Energy Modelling of Machine Tools for Optimization of Machine Setups
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
607
613
.
16.
Mohammed
,
A.
,
Schmidt
,
B.
,
Wang
,
L.
, and
Gao
,
L.
,
2014
, “
Minimizing Energy Consumption for Robot Arm Movement
,”
Procedia CIRP
,
25
, pp.
400
405
.
17.
Vergnano
,
A.
,
Thorstensson
,
C.
,
Lennartson
,
B.
,
Falkman
,
P.
,
Pellicciari
,
M.
,
Leali
,
F.
, and
Biller
,
S.
,
2012
, “
Modeling and Optimization of Energy Consumption in Cooperative Multi-Robot Systems
,”
TASE
,
9
(
2
), pp.
423
428
.
18.
Pellicciari
,
M.
,
Berselli
,
G.
,
Leali
,
F.
, and
Vergnano
,
A.
,
2013
, “
A Method for Reducing the Energy Consumption of Pick-and-Place Industrial Robots
,”
Mechatronics
,
23
(
3
), pp.
326
334
.
19.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
De Schutter
,
J.
, and
Diehl
,
M.
,
2009
, “
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2318
2327
.
20.
Gauthier
,
J. F.
,
Angeles
,
J.
, and
Nokleby
,
S.
,
2006
, “
Optimization of a Test Trajectory for SCARA Systems
,”
Adv. Rob. Kinematics: Anal. Des.
, Eds. Lenarčič, J. and Wenger P., Springer, The Netherlands, pp.
225
234
.
21.
Brossog
,
M.
,
Kohl
,
J.
,
Merhof
,
J.
,
Spreng
,
S.
, and
Franke
,
J.
,
2014
, “
Energy Consumption and Dynamic Behavior Analysis of a Six-Axis Industrial Robot in an Assembly System
,”
Procedia CIRP
,
23
, pp.
131
136
.
22.
Ystgaard
,
P.
,
Gjerstad
,
T. B.
,
Lien
,
T. K.
, and
Nyen
,
P. A.
,
2012
, “
Mapping Energy Consumption for Industrial Robots
,”
Leveraging Technology for a Sustainable World
, Berkeley, CA.
23.
Chhabra
,
R.
, and
Emami
,
M. R.
,
2011
, “
Holistic System Modeling in Mechatronics
,”
Mechatronics
,
21
(
1
), pp.
166
175
.
24.
Gielen
,
D.
, and
Taylor
,
M.
,
2007
, “
Modelling Industrial Energy Use: The IEAs Energy Technology Perspectives
,”
Energy Econ.
,
29
(
4
), pp.
889
912
.
25.
Gregory
,
J.
,
Olivares
,
A.
, and
Staffetti
,
E.
,
2012
, “
Energy-Optimal Trajectory Planning for Robot Manipulators With Holonomic Constraints
,”
Syst. Control Lett.
,
61
(
2
), pp.
279
291
.
26.
Saravanan
,
R.
,
Ramabalan
,
S.
, and
Balamurugan
,
C.
,
2008
, “
Evolutionary Optimal Trajectory Planning for Industrial Robot With Payload Constraints
,”
Int. J. Adv. Manuf. Technol.
,
38
(
11
), pp.
1213
1226
.
27.
Sergaki
,
E. S.
,
Stavrakakis
,
G. S.
, and
Pouliezos
,
A. D.
,
2002
, “
Optimal Robot Speed Trajectory by Minimization of the Actuator Motor Electromechanical Losses
,”
J. Intell. Rob. Syst.
,
33
(
2
), pp.
187
207
.
28.
Hansen
,
C.
,
Oltjen
,
J.
,
Meike
,
D.
, and
Ortmaier
,
T.
, “
Enhanced Approach for Energy-Efficient Trajectory Generation of Industrial Robots
,”
IEEE
International Conference on Automation Science and Engineering (CASE)
, Seoul, Korea, Aug. 20–24, pp.
1
7
.
29.
Matthias
,
P.
, and
Martin
,
B.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5
), pp.
1315
1328
.
30.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(2), pp.
215
221
.
31.
Wang
,
L.
,
Sams
,
R.
,
Verner
,
M.
, and
Xi
,
F.
,
2003
, “
Integrating Java 3D Model and Sensor Data for Remote Monitoring and Control
,”
Rob. Comput.-Integr. Manuf.
,
19
(
1–2
), pp.
13
19
.
32.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
2
), pp.
69
76
.
You do not currently have access to this content.