A coupled thermal–mechanical model based on the Eulerian formulation is developed for the steady-state dissimilar friction stir welding (FSW) process. Multiple phase flow theories are adopted in deriving analytical formulations, which are further implemented into the fluent software for computational fluid dynamics analysis. A shear stress boundary at the tool/workpiece interface yields a much more reasonable material distribution compared with a velocity boundary condition when the involved two materials have quite different physical and mechanical properties. The model can capture the feature of embedded steel strip in aluminum side, as observed in weld cross sections from experiments. For further evaluation, the calculated flow and thermal response are compared with experimental results in three welding conditions, which generally show good agreements.

References

1.
Khandkar
,
M. Z. H.
,
Khan
,
J. A.
, and
Reynolds
,
A. P.
,
2003
, “
Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model
,”
Sci. Technol. Weld. Joining
,
8
(
3
), pp.
165
174
.
2.
Chao
,
Y. J.
, and
Qi
,
X.
,
1998
, “
Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6
,”
J. Mater. Process. Manuf. Sci.
,
7
(
2
), pp.
215
233
.
3.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding-Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.
4.
Zhu
,
X.
, and
Chao
,
Y.
,
2004
, “
Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
263
272
.
5.
Hamilton
,
C.
,
Dymek
,
S.
, and
Blicharski
,
M.
,
2008
, “
A Model of Material Flow During Friction Stir Welding
,”
Mater. Charact.
,
59
(
9
), pp.
1206
1214
.
6.
Khandkar
,
M.
,
Khan
,
J. A.
, and
Reynolds
,
A. P.
,
2003
, “
Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model
,”
Sci. Technol. Weld. Joining
,
8
(
3
), pp.
165
174
.
7.
De Vuyst
,
T.
,
D'Alvise
,
L.
,
Simar
,
A.
,
De Meester
,
B.
, and
Pierret
,
S.
,
2005
, “
Finite Element Modelling of Friction Stir Welding of Aluminium Alloy Plates-Inverse Analysis Using a Genetic Algorithm
,”
Weld. World
,
49
(
3–4
), pp.
47
55
.
8.
Simar
,
A.
,
Lecomte-Beckers
,
J.
,
Pardoen
,
T.
, and
De Meester
,
B.
,
2006
, “
Effect of Boundary Conditions and Heat Source Distribution on Temperature Distribution in Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
11
(
2
), pp.
170
177
.
9.
Song
,
M.
, and
Kovacevic
,
R.
,
2003
, “
Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and Its Validation
,”
Int. J. Mach. Tools Manuf.
,
43
(
6
), pp.
605
615
.
10.
Zhang
,
H.
,
Zhang
,
Z.
, and
Chen
,
J.
,
2005
, “
The Finite Element Simulation of the Friction Stir Welding Process
,”
Mater. Sci. Eng.
, A,
403
(
1
), pp.
340
348
.
11.
Kuykendall
,
K.
,
Nelson
,
T.
, and
Sorensen
,
C.
,
2013
, “
On the Selection of Constitutive Laws Used in Modeling Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
74
85
.
12.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.
13.
Liechty
,
B.
, and
Webb
,
B.
,
2008
, “
Modeling the Frictional Boundary Condition in Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1474
1485
.
14.
Trimble
,
D.
,
Monaghan
,
J.
, and
O'Donnell
,
G.
,
2012
, “
Force Generation During Friction Stir Welding of AA2024-T3
,”
CIRP Ann. - Manuf. Technol.
,
61
(
1
), pp.
9
12
.
15.
Yu
,
M.
,
Li
,
W.
,
Li
,
J.
, and
Chao
,
Y.
,
2012
, “
Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method
,”
Mater. Sci. Technol.
,
28
(
7
), pp.
812
817
.
16.
Mandal
,
S.
,
Rice
,
J.
, and
Elmustafa
,
A.
,
2008
, “
Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
203
(
1
), pp.
411
419
.
17.
Schmidt
,
H.
, and
Hattel
,
J.
,
2005
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
77
93
.
18.
Hossfeld
,
M.
, and
Roos
,
E.
,
2013
, “
A New Approach to Modelling Friction Stir Welding Using the CEL Method
,”
Advanced Manufacturing Engineering and Technologies
(
NEWTECH 2013
), Stockholm, Sweden, Oct. 27–30, p.
179
.
19.
Guerdoux
,
S.
, and
Fourment
,
L.
,
2009
, “
A 3D Numerical Simulation of Different Phases of Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
7
), p.
075001
.
20.
Ulysse
,
P.
,
2002
, “
Three-Dimensional Modeling of the Friction Stir-Welding Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1549
1557
.
21.
Colegrove
,
P.
, and
Shercliff
,
H.
,
2004
, “
Development of Trivex Friction Stir Welding Tool Part 2: Three-Dimensional Flow Modelling
,”
Sci. Technol. Weld. Joining
,
9
(
4
), pp.
352
361
.
22.
Nandan
,
R.
,
Roy
,
G.
,
Lienert
,
T.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.
23.
Nandan
,
R.
,
Debroy
,
T.
, and
Bhadeshia
,
H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
24.
Arora
,
A.
,
Nandan
,
R.
,
Reynolds
,
A.
, and
DebRoy
,
T.
,
2009
, “
Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments
,”
Scr. Mater.
,
60
(
1
), pp.
13
16
.
25.
Nandan
,
R.
,
Roy
,
G.
, and
Debroy
,
T.
,
2006
, “
Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding
,”
Metall. Mater. Trans. A
,
37
(
4
), pp.
1247
1259
.
26.
Nandan
,
R.
,
Roy
,
G.
,
Lienert
,
T.
, and
DebRoy
,
T.
,
2006
, “
Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel
,”
Sci. Technol. Weld. Joining
,
11
(
5
), pp.
526
537
.
27.
Chen
,
G.
,
Shi
,
Q.
, and
Feng
,
Z.
,
2015
, “
On the Material Behavior at Tool/Workpiece Interface During Friction Stir Welding: A CFD Based Numerical Study
,” Friction Stir Welding and Processing VIII, pp.
25
1–258
.
28.
Chen
,
G. Q.
,
Shi
,
Q. Y.
,
Fujiya
,
Y.
, and
Horie
,
T.
,
2014
, “
Simulation of Metal Flow During Friction Stir Welding Based on the Model of Interactive Force Between Tool and Material
,”
J. Mater. Eng. Perform.
,
23
(
4
), pp.
1321
1328
.
29.
Wang
,
H.
,
Colegrove
,
P. A.
, and
dos Santos
,
J. F.
,
2013
, “
Numerical Investigation of the Tool Contact Condition During Friction Stir Welding of Aerospace Aluminium Alloy
,”
Comput. Mater. Sci.
,
71
, pp.
101
108
.
30.
Su
,
H.
,
Wu
,
C. S.
,
Pittner
,
A.
, and
Rethmeier
,
M.
,
2014
, “
Thermal Energy Generation and Distribution in Friction Stir Welding of Aluminum Alloys
,”
Energy
,
77
, pp.
720
731
.
31.
Kishore
,
V. R.
,
Arun
,
J.
,
Padmanabhan
,
R.
, and
Balasubramanian
,
V.
,
2015
, “
Parametric Studies of Dissimilar Friction Stir Welding Using Computational Fluid Dynamics Simulation
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
91
98
.
32.
Tang
,
J.
, and
Shen
,
Y.
,
2016
, “
Numerical Simulation and Experimental Investigation of Friction Stir Lap Welding Between Aluminum Alloys AA2024 and AA7075
,”
J. Alloys Compd.
,
666
, pp.
493
500
.
33.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
,
2006
, “
A Continuum Based FEM Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng., A
,
419
(
1–2
), pp.
389
396
.
34.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.
35.
Li
,
K.
,
Aidun
,
D.
, and
Marzocca
,
P.
,
2009
, “
Time-Varying Functionally Graded Material Thermal Modeling of Friction Stir Welding Joint of Dissimilar Metals
,” 8th International Conference on Trends in Welding Research (TWR), Pine Mountain, GA, June 1–6, pp.
731
735
.
36.
Torres
,
E.
, 2012, “
CFD Modelling of Dissimilar Aluminum-Steel Friction Stir Welds
,”
Ninth International Conference on Trends in Welding Research, ASM
, Chicago, IL, June 4–8, pp. 604–610.
37.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2014
, “
Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel
,”
Mater. Des.
,
59
, pp.
50
62
.
38.
Li
,
Z.
,
Mukai
,
K.
,
Zeze
,
M.
, and
Mills
,
K.
,
2005
, “
Determination of the Surface Tension of Liquid Stainless Steel
,”
J. Mater. Sci.
,
40
(
9–10
), pp.
2191
2195
.
39.
Sarou-Kanian
,
V.
,
Millot
,
F.
, and
Rifflet
,
J. C.
,
2003
, “
Surface Tension and Density of Oxygen-Free Liquid Aluminum at High Temperature
,”
Int. J. Thermophys.
,
24
(
1
), pp.
277
286
.
40.
Anson
,
J.
,
Drew
,
R.
, and
Gruzleski
,
J.
,
1999
, “
The Surface Tension of Molten Aluminum and Al-Si-Mg Alloy Under Vacuum and Hydrogen Atmospheres
,”
Metall. Mater. Trans. B
,
30
(
6
), pp.
1027
1032
.
41.
Girifalco
,
L.
, and
Good
,
R.
,
1957
, “
A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension
,”
J. Phys. Chem.
,
61
(
7
), pp.
904
909
.
42.
ANSYS, Inc., 2013
, “
Reference Manual, FLUENT 15.0
,”
ANSYS
, Canonsburg, PAhttps://uiuc-cse.github.io/me498cm-fa15/lessons/fluent/refs/ANSYS%20Fluent%20Theory%20Guide.pdf.
43.
Sheppard
,
T.
, and
Wright
,
D.
,
1979
, “
Determination of Flow Stress: Part 1 Constitutive Equation For Aluminium Alloys at Elevated Temperatures
,”
Met. Technol.
,
6
(
1
), pp.
215
223
.
44.
Nandan
,
R.
,
Prabu
,
B.
,
De
,
A.
, and
Debroy
,
T.
,
2007
, “
Improving Reliability of Heat Transfer and Materials Flow Calculations During Friction Stir Welding of Dissimilar Aluminum Alloys
,”
Weld. J.
,
86
(
10
), pp.
313
322
https://app.aws.org/wj/supplement/wj1007-313.pdf.
45.
Cho
,
H.-H.
,
Hong
,
S.-T.
,
Roh
,
J.-H.
,
Choi
,
H.-S.
,
Kang
,
S. H.
,
Steel
,
R. J.
, and
Han
,
H. N.
,
2013
, “
Three-Dimensional Numerical and Experimental Investigation on Friction Stir Welding Processes of Ferritic Stainless Steel
,”
Acta Mater.
,
61
(
7
), pp.
2649
2661
.
46.
Dirikolu
,
M.
,
Childs
,
T.
, and
Maekawa
,
K.
,
2001
, “
Finite Element Simulation of Chip Flow in Metal Machining
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2699
2713
.
47.
Childs
,
T.
,
2000
,
Metal Machining: Theory and Applications
,
Butterworth-Heinemann
, Amsterdam, Chap. 2.1.
48.
Khamei
,
A.
, and
Dehghani
,
K.
,
2015
, “
Effects of Strain Rate and Temperature on Hot Tensile Deformation of Severe Plastic Deformed 6061 Aluminum Alloy
,”
Mater. Sci. Eng.
, A,
627
, pp.
1
9
.
49.
Li
,
D.
,
Feng
,
Y.
,
Yin
,
Z.
,
Shangguan
,
F.
,
Wang
,
K.
,
Liu
,
Q.
, and
Hu
,
F.
,
2012
, “
Hot Deformation Behavior of an Austenitic Fe–20Mn–3Si–3Al Transformation Induced Plasticity Steel
,”
Mater. Des.
,
34
, pp.
713
718
.
50.
Maekawa
,
K.
,
Kubo
,
A.
, and
Childs
,
T.
,
2001
, “
A Friction Model for Free-Machining Steels and Its Applicability to Machinability Analysis
,”
Key Eng. Mater.
,
196
, pp.
79
90
.
51.
Arora
,
A.
,
De
,
A.
, and
DebRoy
,
T.
,
2011
, “
Toward Optimum Friction Stir Welding Tool Shoulder Diameter
,”
Scr. Mater.
,
64
(
1
), pp.
9
12
.
52.
Park
,
K.
,
2009
, “
Development and Analysis of Ultrasonic Assisted Friction Stir Welding Process
,”
Ph.D. dissertation
, University of Michigan, Ann Arbor, MIhttps://deepblue.lib.umich.edu/bitstream/handle/2027.42/63847/hyunpark_1.pdf?sequence=1.
You do not currently have access to this content.