Energy consumption in five-axis machining of freeform surfaces can be considerably large for large-size parts. This paper presents a study on how to setup the workpiece in order to minimize the energy consumption without modifying the toolpath itself. For an arbitrary freeform workpiece, the way how it is setup on the working table highly affects the machine's kinematic behavior, which dominates the overall processing time and energy consumption. Taking into account the speed and acceleration limit of each axis of the machine, we first establish the energy consumption model as a function of the workpiece setup. However, this original model involves certain critical physically pertinent coefficients (such as the moment of inertial of a rotary table) which are usually unavailable in practice. Instead, by exploring insightful geometric characteristics of the five-axis machine, an alternative energy consumption model is established which is independent of those hard-to-obtain coefficients. A simple algorithm is then designed to optimize this model. Both computer simulations and physical cutting experiments demonstrate that, when compared with an arbitrary setup, the optimized workpiece setup is able to achieve a significant saving (as much as 50%) in both energy consumption and total machining time, both using a same tool path.

References

References
1.
Liu
,
X.
,
Li
,
Y.
,
Ma
,
S.
, and
Lee
,
C.-H.
,
2015
, “
A Tool Path Generation Method for Freeform Surface Machining by Introducing the Tensor Property of Machining Strip Width
,”
Comput. Aided Des.
,
66
, pp.
1
13
.
2.
Bohez
,
E. L.
,
2002
, “
Five-Axis Milling Machine Tool Kinematic Chain Design and Analysis
,”
Int. J. Mach. Tools Manuf.
,
42
(
4
), pp.
505
520
.
3.
Lee
,
R.-S.
, and
She
,
C.-H.
,
1997
, “
Developing a Postprocessor for Three Types of Five-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
658
665
.
4.
Tutunea-Fatan
,
O. R.
, and
Feng
,
H.-Y.
,
2004
, “
Configuration Analysis of Five-Axis Machine Tools Using a Generic Kinematic Model
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1235
1243
.
5.
She
,
C.-H.
, and
Chang
,
C.-C.
,
2007
, “
Design of a Generic Five-Axis Postprocessor Based on Generalized Kinematics Model of Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
47
(3–4), pp.
537
545
.
6.
Affouard
,
A.
,
Duc
,
E.
,
Lartigue
,
C.
,
Langeron
,
J.-M.
, and
Bourdet
,
P.
,
2004
, “
Avoiding 5-Axis Singularities Using Tool Path Deformation
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
415
425
.
7.
Sørby
,
K.
,
2007
, “
Inverse Kinematics of Five-Axis Machines Near Singular Configurations
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
299
306
.
8.
Lin
,
Y.
, and
Shen
,
Y.
,
2003
, “
Modelling of Five-Axis Machine Tool Metrology Models Using the Matrix Summation Approach
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
243
248
.
9.
Ibaraki
,
S.
,
Sawada
,
M.
,
Matsubara
,
A.
, and
Matsushita
,
T.
,
2010
, “
Machining Tests to Identify Kinematic Errors on Five-Axis Machine Tools
,”
Precis. Eng.
,
34
(
3
), pp.
387
398
.
10.
Uddin
,
M. S.
,
Ibaraki
,
S.
,
Matsubara
,
A.
, and
Matsushita
,
T.
,
2009
, “
Prediction and Compensation of Machining Geometric Errors of Five-Axis Machining Centers With Kinematic Errors
,”
Precis. Eng.
,
33
(
2
), pp.
194
201
.
11.
My
,
C. A.
, and
Bohez
,
E. L.
,
2016
, “
New Algorithm to Minimise Kinematic Tool Path Errors Around 5-Axis Machining Singular Points
,”
Int. J. Prod. Res.
,
54
(20), pp.
1
11
.
12.
Kordonowy
,
D. N.
,
2002
, “
A Power Assessment of Machining Tools
,” Massachusetts Institute of Technology, Boston, MA.
13.
Kara
,
S.
, and
Li
,
W.
,
2011
, “
Unit Process Energy Consumption Models for Material Removal Processes
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
37
40
.
14.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “
Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use
,”
Glocalized Solutions for Sustainability in Manufacturing
,
Springer
, Berkeley, CA, pp.
263
267
.
15.
Draganescu
,
F.
,
Gheorghe
,
M.
, and
Doicin
,
C.
,
2003
, “
Models of Machine Tool Efficiency and Specific Consumed Energy
,”
J. Mater. Process. Technol.
,
141
(
1
), pp.
9
15
.
16.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2014
, “
Critical Factors in Energy Demand Modelling for CNC Milling and Impact of Toolpath Strategy
,”
J. Cleaner Prod.
,
78
, pp.
63
74
.
17.
Diaz
,
N.
,
Helu
,
M.
,
Jarvis
,
A.
,
Tönissen
,
S.
,
Dornfeld
,
D.
, and
Schlosser
,
R.
,
2009
, “
Strategies for Minimum Energy Operation for Precision Machining
,”
MTTRF
2009 Annual Meeting
, Shanghai, China, July 8–9.http://escholarship.org/uc/item/794866g5#
18.
Quintana
,
G.
,
Ciurana
,
J.
, and
Ribatallada
,
J.
,
2011
, “
Modelling Power Consumption in Ball-End Milling Operations
,”
Mater. Manuf. Process.
,
26
(
5
), pp.
746
756
.
19.
Dietmair
,
A.
, and
Verl
,
A.
,
2009
, “
Energy Consumption Forecasting and Optimisation for Tool Machines
,”
MM Sci. J.
,
2
(1), pp.
63
67
.
20.
Mouzon
,
G.
,
Yildirim
,
M. B.
, and
Twomey
,
J.
,
2007
, “
Operational Methods for Minimization of Energy Consumption of Manufacturing Equipment
,”
Int. J. Prod. Res.
,
45
(18–19), pp.
4247
4271
.
21.
Newman
,
S. T.
,
Nassehi
,
A.
,
Imani-Asrai
,
R.
, and
Dhokia
,
V.
,
2012
, “
Energy Efficient Process Planning for CNC Machining
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
2
), pp.
127
136
.
22.
Campatelli
,
G.
,
Scippa
,
A.
,
Lorenzini
,
L.
, and
Sato
,
R.
,
2015
, “
Optimal Workpiece Orientation to Reduce the Energy Consumption of a Milling Process
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
2
(
1
), pp.
5
13
.
23.
Anotaipaiboon
,
W.
,
Makhanov
,
S. S.
, and
Bohez
,
E. L.
,
2006
, “
Optimal Setup for Five-Axis Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
964
977
.
24.
Pessoles
,
X.
,
Landon
,
Y.
,
Segonds
,
S.
, and
Rubio
,
W.
,
2013
, “
Optimisation of Workpiece Setup for Continuous Five-Axis Milling: Application to a Five-Axis BC Type Machining Centre
,”
Int. J. Adv. Manuf. Technol.
,
65
(1), pp.
67
79
.
25.
Shaw
,
D.
, and
Ou
,
G.-Y.
,
2008
, “
Reducing X, Y and Z Axes Movement of a 5-Axis AC Type Milling Machine by Changing the Location of the Work-Piece
,”
Comput. Aided Des.
,
40
(10–11), pp.
1033
1039
.
26.
Hu
,
P.
, and
Tang
,
K.
,
2011
, “
Improving the Dynamics of Five-Axis Machining Through Optimization of Workpiece Setup and Tool Orientations
,”
Comput. Aided Des.
,
43
(
12
), pp.
1693
1706
.
27.
Tang
,
K.
,
Chen
,
L.-L.
, and
Chou
,
S.-Y.
,
1998
, “
Optimal Workpiece Setups for 4-Axis Numerical Control Machining Based on Machinability
,”
Comput. Ind.
,
37
(
1
), pp.
27
41
.
28.
Kang
,
J.-K.
, and
Suh
,
S.-H.
,
1997
, “
Machinability and Set-Up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
13
(
5
), pp.
311
325
.
29.
Hu
,
P.
,
Tang
,
K.
, and
Lee
,
C.-H.
,
2013
, “
Global Obstacle Avoidance and Minimum Workpiece Setups in Five-Axis Machining
,”
Comput. Aided Des.
,
45
(
10
), pp.
1222
1237
.
30.
Cai
,
N.
,
Wang
,
L.
, and
Feng
,
H.-Y.
,
2008
, “
Adaptive Setup Planning of Prismatic Parts for Machine Tools With Varying Configurations
,”
Int. J. Prod. Res.
,
46
(
3
), pp.
571
594
.
31.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters: Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
32.
De Berg
,
M.
,
Van Kreveld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O. C.
,
2000
,
Computational Geometry
,
Springer
, Dordrecht, The Netherlands, pp.
1
17
.
You do not currently have access to this content.