Selective laser melting (SLM) has been attracting a growing interest in different industrial sectors as it is one of the key technologies for metal additive manufacturing (AM). Despite the relevant improvements made by the SLM technology in the recent years, process capability is still a major issue for its industrial breakthrough. As a matter of fact, different kinds of defect may originate during the layerwise process. In some cases, they propagate from one layer to the following ones leading to a job failure. In other cases, they are hardly visible and detectable by inspecting the final part, as they can affect the internal structure or structural features that are difficult to measure. This implies the need for in-process monitoring methods able to rapidly detect and locate defect onsets during the process itself. Different authors have been investigating machine sensorization architectures, but the development of statistical monitoring techniques is still in a very preliminary phase. This paper proposes a method for the detection and spatial identification of defects during the layerwise process by using a machine vision system in the visible range. A statistical descriptor based on principal component analysis (PCA) applied to image data is presented, which is suitable to identify defective areas of a layer. The use of image k-means clustering analysis is then proposed for automated defect detection. A real case study in SLM including both simple and complicated geometries is discussed to demonstrate the performances of the method.

References

References
1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Horn
,
T. J.
, and
Harrysson
,
O. L.
,
2012
, “
Overview of Current Additive Manufacturing Technologies and Selected Applications
,”
Sci. Prog.
,
95
(
3
), pp.
255
282
.
3.
Mellor
,
S.
,
Hao
,
L.
, and
Zhang
,
D.
,
2014
, “
Additive Manufacturing: A Framework for Implementation
,”
Int. J. Prod. Econ.
,
149
, pp.
194
201
.
4.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
5.
Zhang
,
B.
, and
Coddet
,
C.
,
2015
, “
Selective Laser Melting of Iron Powder: Observation of Melting Mechanism and Densification Behavior Via Point-Track-Surface-Part Research
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051001
.
6.
Mertens
,
R.
,
Clijsters
,
S.
,
Kempen
,
K.
, and
Kruth
,
J. P.
,
2014
, “
Optimization of Scan Strategies in Selective Laser Melting of Aluminum Parts With Downfacing Areas
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061012
.
7.
Gu
,
D.
,
Chang
,
F.
, and
Dai
,
D.
,
2015
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
8.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
9.
Zhang
,
L. C.
, and
Attar
,
H.
,
2015
, “
Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
463
475
.
10.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Liu
,
Z. H.
,
2015
, “
Rapid Tooling in Manufacturing
,”
Handbook of Manufacturing Engineering and Technology
,
Springer
,
London
, pp.
2525
2549
.
11.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
12.
Mani
,
M.
,
Lane
,
B.
,
Donmez
,
A.
,
Feng
,
S.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” NISTIR, Report No. 8036.
13.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Procedia
,
5
(Part B), pp.
505
514
.
14.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.
15.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5
), pp.
1089
1101
.
16.
Doubenskaia
,
M.
,
Pavlov
,
M.
,
Grigoriev
,
S.
,
Tikhonova
,
E.
, and
Smurov
,
I.
,
2012
, “
Comprehensive Optical Monitoring of Selective Laser Melting
,”
J. Laser Micro/Nanoeng.
,
7
(
3
), pp.
236
243
.
17.
Lott
,
P.
,
Schleifenbaum
,
H.
,
Meiners
,
W.
,
Wissenbach
,
K.
,
Hinke
,
C.
, and
Bültmann
,
J.
,
2011
, “
Design of an Optical System for the In Situ Process Monitoring of Selective Laser Melting (SLM)
,”
Phys. Procedia
,
12
(Part A), pp.
683
690
.
18.
Abdelrahman
,
M.
, and
Starr
,
T. L.
,
2014
, “
Layerwise Monitoring of Polymer Laser Sintering Using Thermal Imaging
,”
25th Solid Freeform Fabrication Symposium (SFF 2014)
, Laboratory for Freeform Fabrication, University of Texas at Austin, Austin, TX, pp. 244–255.
19.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Solid Freeform Fabrication Symposium
, pp.
999
1014
.
20.
Jacobsmuhlen
,
J. Z.
,
Kleszczynski
,
S.
,
Schneider
,
D.
, and
Witt
,
G.
,
2013
, “
High Resolution Imaging for Inspection of Laser Beam Melting Systems
,”
Instrumentation and Measurement Technology Conference (I2MTC)
, IEEE, Minneapolis, MN, pp.
707
712
.
21.
Schilp
,
J.
,
Seidel
,
C.
,
Krauss
,
H.
, and
Weirather
,
J.
,
2014
, “
Investigations on Temperature Fields During Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling
,”
Adv. Mech. Eng.
,
6
, p.
217584
.
22.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
(Springer Series in Statistics),
2nd ed.
,
Springer
,
New York
.
23.
Johnson
,
R. A.
, and
Wichern
,
D. W.
,
1992
,
Applied Multivariate Statistical Analysis
, Vol.
4
,
Prentice Hall
,
Englewood Cliffs, NJ
.
24.
Montgomery
,
D. C.
,
2008
,
Introduction to Statistical Quality Control
,
6th ed.
,
Wiley
, New York.
25.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
, Vol.
2
,
Springer
,
New York
.
26.
Galimberti
,
G.
,
Guagliano
,
M.
,
Previtali
,
B.
, and
Rampino
,
L.
,
2015
, “
Digital Aesthetic of New Products Obtained by Selective Laser Melting Processes
,”
20th International Conference on Engineering Design
(
ICED15
), Milan, Italy, July 27–30, Vol.
4
, 193–204.http://m.designsociety.org/index.php?menu=31&action=37795
27.
Kiers
,
H. A. L.
,
2000
, “
Towards a Standardized Notation and Terminology in Multiway Analysis
,”
J. Chemom.
,
14
(
3
), pp.
105
122
.
28.
Yang
,
J.
,
Zhang
,
D.
,
Frangi
,
A. F.
, and
Yang
,
J.
,
2004
, “
Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
26
(
1
), pp.
131
137
.
29.
Gottumukkal
,
R.
, and
Asari
,
V. K.
,
2004
, “
An Improved Face Recognition Technique Based on Modular PCA Approach
,”
Pattern Recognit. Lett.
,
25
(
4
), pp.
429
436
.
30.
Rodarmel
,
C.
, and
Shan
,
J.
,
2002
, “
Principal Component Analysis for Hyperspectral Image Classification
,”
Surv. Land Inf. Sci.
,
62
(
2
), pp.
115
122
.https://www.researchgate.net/publication/265198128_Principal_Component_Analysis_for_Hyperspectral_Image_Classification
31.
Ye
,
J.
,
Janardan
,
R.
, and
Li
,
Q.
,
2004
, “
GPCA: An Effcient Dimension Reduction Scheme for Image Compression and Retrieval
,”
10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp.
354
363
.
32.
Nomikos
,
P.
, and
MacGregor
,
J. F.
,
1995
, “
Multivariate SPC Charts for Monitoring Batch Processes
,”
Technometrics
,
37
(
1
), pp.
41
59
.
33.
Megahed
,
F. M.
,
Woodall
,
W. H.
, and
Camelio
,
J. A.
,
2011
, “
A Review and Perspective on Control Charting With Image Data
,”
J. Qual. Technol.
,
43
(
2
), pp.
83
98
.https://www.researchgate.net/publication/258566049_A_Review_and_Perspective_on_Control_Charting_with_Image_Data
34.
Jäger
,
M.
, and
Hamprecht
,
F.
,
2009
, “
Principal Component Imagery for the Quality Monitoring of Dynamic Laser Welding Processes
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
1307
1313
.
35.
Senin
,
N.
,
Ziliotti
,
M.
, and
Groppetti
,
R.
,
2007
, “
Three-Dimensional Surface Topography Segmentation Through Clustering
,”
Wear
,
262
(
3
), pp.
395
410
.
36.
Hartigan
,
J. A.
,
1975
,
Clustering Algorithms
,
Wiley
,
New York
.
37.
Ball
,
G. H.
, and
Hall
,
D. J.
,
1965
, “
ISODATA: A Novel Method of Data Analysis and Pattern Classification
,” Stanford Research Institute, Menlo Park, CA, Technical Report, NTIS No. AD 699616.
38.
Calinski
,
T.
, and
Harabasz
,
J.
,
1974
, “
A Dendrite Method for Cluster Analysis
,”
Commun. Stat.
,
3
(1), pp.
1
27
.
39.
Zhao
,
Q.
,
Xu
,
M.
, and
Fränti
,
P.
,
2009
, “
Sum-of-Squares Based Cluster Validity Index and Significance Analysis. Adaptive and Natural Computing Algorithms
,”
Lect. Notes Comput. Sci.
,
5495
, pp.
313
322
.
40.
Xu
,
L.
,
1997
, “
Bayesian Ying-Yang Machine, Clustering and Number of Clusters
,”
Pattern Recognit. Lett.
,
18
(11–13), pp.
1167
1178
.
41.
Grasso
,
M.
,
Colosimo
,
B. M.
, and
Pacella
,
M.
,
2014
, “
Profile Monitoring Via Sensor Fusion: The Use of PCA Methods for Multi-Channel Data
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
6110
6135
.
42.
Williams
,
J. D.
,
Woodall
,
W. H.
,
Birch
,
J. B.
, and
Sullivan
,
J. H.
,
2006
, “
On the Distribution of Hotelling's T2 Statistic Based on the Successive Differences Covariance Matrix Estimator
,”
J. Qual. Technol.
,
38
(3), pp.
217
229
.
43.
Valle
,
S.
,
Li
,
W.
, and
Qin
,
S. J.
,
1999
, “
Selection of the Number of Principal Components: The Variance of Reconstruction Error Criterion With a Comparison to Other Methods
,”
Ind. Eng. Chem. Res.
,
38
(
11
), pp.
4389
4401
.
44.
Colosimo
,
B. M.
, and
Pacella
,
M.
,
2007
, “
On the Use of Principal Component Analysis to Identify Systematic Patterns in Roundness Profiles
,”
Qual. Reliab. Eng. Int.
,
23
(6), pp.
925
941
.
You do not currently have access to this content.