This work presents an overview of structural characteristics and basic mechanical properties of the open-cell metallic foams obtained by different space-holder methods, which are discussed in Part I of the same review. The presentation is arranged with respect to foam material, and the structure and properties are compared for different space holders and production techniques. In order to have more clear information for the structures obtained and their relation with production techniques, many images are provided and discussed. Compressive behavior of the foams is shown, and stress–strain curves are analyzed with respect to the energy absorption characteristics. The analysis are made on the basis of different porosities and processing parameters. Some applications of the open-cell metallic foams are discussed in the end of the article.

References

1.
Jha
,
N.
,
Mondal
,
D. P.
,
Majumdar
,
J. D.
,
Badkul
,
A.
,
Jha
,
A. K.
, and
Khare
,
A. K.
,
2013
, “
Highly Porous Open Cell Ti-Foam Using NaCl as Temporary Space Holder Through Powder Metallurgy Route
,”
Mater. Des.
,
47
, pp.
810
819
.
2.
Lee
,
D. J.
,
Jung
,
J. M.
,
Latypov
,
M. I.
,
Lee
,
B.
,
Jeong
,
J.
,
Oh
,
S. H.
,
Lee
,
C. S.
, and
Kim
,
H. S.
,
2014
, “
Three-Dimensional Real Structure-Based Finite Element Analysis of Mechanical Behavior for Porous Titanium Manufactured by a Space Holder Method
,”
Comput. Mater. Sci.
,
100
(Part A), pp.
2
7
.
3.
Torres
,
Y.
,
Pavón
,
J. J.
,
Trueba
,
P.
,
Cobos
,
J.
, and
Rodriguez-Ortiz
,
J. A.
,
2014
, “
Design, Fabrication and Characterization of Titanium With Graded Porosity by Using Space-Holder Technique
,”
Proc. Mater. Sci.
,
4
, pp.
115
119
.
4.
Sharma
,
M.
,
Gupta
,
G. K.
,
Modi
,
O. P.
,
Prasad
,
B. K.
, and
Gupta
,
A. K.
,
2011
, “
Titanium Foam Through Powder Metallurgy Route Using Acicular Urea Particles as Space Holder
,”
Mater. Lett.
,
65
(
21–22
), pp.
3199
3201
.
5.
Esen
,
Z.
, and
Bor
,
S.
,
2007
, “
Processing of Titanium Foams Using Magnesium Spacer Particles
,”
Scr. Mater.
,
56
(
5
), pp.
341
344
.
6.
Kim
,
S. W.
,
Jung
,
H. D.
,
Kang
,
M. H.
,
Kim
,
H. E.
,
Koh
,
Y. H.
, and
Estrin
,
Y.
,
2013
, “
Fabrication of Porous Titanium Scaffold With Controlled Porous Structure and Net-Shape Using Magnesium as Spacer
,”
Mater. Sci. Eng. C
,
33
(
5
), pp.
2808
2815
.
7.
Jakubowicz
,
J.
,
Adamek
,
G.
,
Pałka
,
K.
, and
Andrzejewski
,
D.
,
2015
, “
Micro-CT Analysis and Mechanical Properties of Ti Spherical and Polyhedral Void Composites Made With Saccharose as a Space Holder Material
,”
Mater. Charact.
,
100
, pp.
13
20
.
8.
Jakubowicz
,
J.
,
Adamek
,
G.
, and
Dewidar
,
M.
,
2013
, “
Titanium Foam Made With Saccharose as a Space Holder
,”
J. Porous Mater.
,
20
(
5
), pp.
1137
1141
.
9.
Mondal
,
D. P.
,
Patel
,
M.
,
Jain
,
H.
,
Jha
,
A. K.
,
Das
,
S.
, and
Dasgupta
,
R.
,
2015
, “
The Effect of the Particle Shape and Strain Rate on Microstructure and Compressive Deformation Response of Pure Ti-Foam Made Using Acrowax as Space Holder
,”
Mater. Sci. Eng. A
,
625
, pp.
331
334
.
10.
Changshu
,
X.
,
Yan
,
Z.
,
Zengfeng
,
L.
,
Hanliang
,
Z.
,
Yuanping
,
H.
, and
Huiping
,
T.
,
2012
, “
Preparation and Compressive Behavior of Porous Titanium Prepared by Space Holder Sintering Process
,”
Proc. Eng.
,
27
, pp.
768
774
.
11.
Mansourighasri
,
A.
,
Muhamad
,
N.
, and
Sulong
,
A. B.
,
2012
, “
Processing Titanium Foams Using Tapioca Starch as a Space Holder
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
83
89
.
12.
Chino
,
Y.
, and
Dunand
,
D. C.
,
2008
, “
Directionally Freeze-Cast Titanium Foam With Aligned, Elongated Pores
,”
Acta Mater.
,
56
(
1
), pp.
105
113
.
13.
Yook
,
S.-W.
,
Jung
,
H.-D.
,
Park
,
C.-H.
,
Shin
,
K.-H.
,
Koh
,
Y.-H.
,
Estrin
,
Y.
, and
Kim
,
H.-E.
,
2012
, “
Reverse Freeze Casting: A New Method for Fabricating Highly Porous Titanium Scaffolds With Aligned Large Pores
,”
Acta Biomater.
,
8
(
6
), pp.
2401
2410
.
14.
Esen
,
Z.
, and
Bor
,
Ş.
,
2011
, “
Characterization of Ti–6Al–4V Alloy Foams Synthesized by Space Holder Technique
,”
Mater. Sci. Eng. A
,
528
(
7–8
), pp.
3200
3209
.
15.
Aşık
,
E.
, and
Bor
,
Ş.
,
2015
, “
Fatigue Behavior of Ti–6Al–4V Foams Processed by Magnesium Space Holder Technique
,”
Mater. Sci. Eng. A
,
621
, pp.
157
165
.
16.
Hsu
,
H.
,
Wu
,
S.
,
Hsu
,
S.
,
Tsai
,
M.
,
Chang
,
T.
, and
Ho
,
W.
,
2013
, “
Processing and Mechanical Properties of Porous Ti–7.5Mo Alloy
,”
Mater. Des.
,
47
, pp.
21
26
.
17.
Nakaş
,
G.
,
Dericioğlu
,
A. F.
, and
Bor
,
Ş.
,
2013
, “
Monotonic and Cyclic Compressive Behavior of Superelastic TiNi Foams Processed by Sintering Using Magnesium Space Holder Technique
,”
Mater. Sci. Eng. A
,
582
, pp.
140
146
.
18.
Aydoğmuş
,
T.
, and
Bor
,
Ş.
,
2009
, “
Processing of Porous TiNi Alloys Using Magnesium as Space Holder
,”
J. Alloys Compd.
,
478
(
1–2
), pp.
705
710
.
19.
Nakas
,
G.
,
Dericioglu
,
A.
, and
Bor
,
Ş.
,
2011
, “
Fatigue Behavior of TiNi Foams Processed by the Magnesium Space Holder Technique
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
2017
2023
.
20.
Aydogmuş
,
T.
, and
Bor
,
Ş.
,
2012
, “
Superelasticity and Compression Behavior of Porous TiNi Alloys Produced Using Mg Spacers
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
59
69
.
21.
Bewerse
,
C.
,
Emery
,
A. A.
,
Brinson
,
L. C.
, and
Dunand
,
D. C.
,
2015
, “
NiTi Porous Structure With 3D Interconnected Microchannels Using Steel Wire Spaceholders
,”
Mater. Sci. Eng. A
,
634
, pp.
153
160
.
22.
Li
,
D. S.
,
Zhang
,
Y. P.
,
Ma
,
X.
, and
Zhang
,
X. P.
,
2009
, “
Space-Holder Engineered Porous NiTi Shape Memory Alloys With Improved Pore Characteristics and Mechanical Properties
,”
J. Alloys Compd.
,
474
(1–2), pp.
L1
L5
.
23.
San Marchi
,
C.
,
Despois
,
J. F.
, and
Mortensen
,
A.
,
1999
, “
Fabrication and Compressive Response of Open-Cell Aluminum Foams With Sub-Millimeter Pores
,”
Euromat 99
, T. W. Clyne and F. Simancik, eds.,
Munich, Germany
,
DGM/Wiley-VCH
, Hoboken, NJ, p.
34
.
24.
San Marchi
,
C.
, and
Mortensen
,
A.
,
2001
, “
Deformation of Open-Cell Aluminum Foam
,”
Acta Mater.
,
49
(
19
), pp.
3959
3969
.
25.
Diologent
,
F.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2009
, “
Surface Oxide in Replicated Microcellular Aluminium and Its Influence on the Plasticity Size Effect
,”
Acta Mater.
,
57
(
1
), pp.
286
294
.
26.
Diologent
,
F.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2009
, “
Creep of Aluminium–Magnesium Open Cell Foam
,”
Acta Mater.
,
57
(
3
), pp.
351
354
.
27.
Soubielle
,
S.
,
Diologent
,
F.
,
Salvo
,
L.
, and
Mortensen
,
A.
,
2011
, “
Creep of Replicated Microcellular Aluminium
,”
Acta Mater.
,
59
(
2
), pp.
440
450
.
28.
Soubielle
,
S.
,
Salvo
,
L.
,
Diologent
,
F.
, and
Mortensen
,
A.
,
2011
, “
Fatigue and Cyclic Creep of Replicated Microcellular Aluminium
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2657
2663
.
29.
Michailidis
,
N.
,
Stergioudi
,
F.
,
Tsouknidas
,
A.
, and
Pavlidou
,
E.
,
2011
, “
Compressive Response of Al-Foams Produced Via a Powder Sintering Process Based on a Leachable Space-Holder Material
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1662
1667
.
30.
Bafti
,
H.
, and
Habibolahzadeh
,
A.
,
2010
, “
Production of Aluminum Foam by Spherical Carbamide Space Holder Technique-Processing Parameters
,”
Mater. Des.
,
31
(
9
), pp.
4122
4129
.
31.
Sharif
,
A. A.
,
2012
, “
Effects of Re- and Al-Alloying on Mechanical Properties and High-Temperature Oxidation of MoSi2
,”
J. Alloys Compd.
,
518
, pp.
22
26
.
32.
Catalin
,
P.
,
Katsumata
,
K.
,
Isobe
,
T.
,
Matsushita
,
N.
,
Nakajima
,
A.
,
Kurata
,
T.
, and
Okada
,
K.
,
2013
, “
Preparation and Characterization of Lotus Ceramics With Different Pore Sizes and Their Implication for the Generation of Microbubbles for CO2 Sequestration Applications
,”
Ceram. Int.
,
39
(2), pp.
1443
1449
.
33.
Jiang
,
B.
,
Wang
,
Z.
, and
Zhao
,
N.
,
2007
, “
Effect of Pore Size and Relative Density on the Mechanical Properties of Open Cell Aluminum Foams
,”
Scr. Mater.
,
56
(
2
), pp.
169
172
.
34.
Bafti
,
H.
, and
Habibolahzadeh
,
A.
,
2013
, “
Compressive Properties of Aluminum Foam Produced by Powder-Carbamide Spacer Route
,”
Mater. Des.
,
52
, pp.
404
411
.
35.
Alizadeh
,
M.
, and
Mirzaei-Aliabadi
,
M.
,
2012
, “
Compressive Properties and Energy Absorption Behavior of Al–Al2O3 Composite Foam Synthesized by Space-Holder Technique
,”
Mater. Des.
,
35
, pp.
419
424
.
36.
Sun
,
D. X.
, and
Zhao
,
Y. Y.
,
2003
, “
Static and Dynamic Energy Absorption of Al Foams Produced by the Sintering and Dissolution Process
,”
Metall. Mater. Trans. B
,
34
(
1
), pp.
69
74
.
37.
Zhao
,
Y. Y.
, and
Sun
,
D. X.
,
2001
, “
A Novel Sintering-Dissolution Process for Manufacturing Al Foams
,”
Scr. Mater.
,
44
(
1
), pp.
105
110
.
38.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,”
Butterworth-Heinemann
,
Boston, MA
.
39.
Hussain
,
Z.
, and
Suffin
,
N. S. A.
,
2011
, “
Microstructure and Mechanical Behaviour of Aluminium Foam Produced by Sintering Dissolution Process Using NaCl Space Holder
,”
J. Eng. Sci.
,
7
, pp.
37
49
.
40.
Tenorio
,
J. A. S.
, and
Espinosa
,
D. C. R.
,
2000
, “
High Temperature Oxidation of Al-Mg Alloys
,”
Oxid. Met.
,
53
(
3–4
), pp.
361
374
.
41.
Diologent
,
F.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2011
, “
Activation Volume in Microcellular Aluminium: Size Effects in Thermally Activated Plastic Flow
,”
Acta Mater.
,
59
(
18
), pp.
6869
6879
.
42.
Klay
,
E.
,
Diologent
,
F.
,
Durussel
,
A.
, and
Mortensen
,
A.
,
2011
, “
Thermally Activated Deformation of Two- and Three-Variant Nanotwinned L10 Au–Cu–Pt
,”
Intermetallics
,
19
(
7
), pp.
988
996
.
43.
Diologent
,
F.
,
Conde
,
Y.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2009
, “
Microstructure, Strength and Creep of Aluminium-Nickel Open Cell Foam
,”
Philos. Mag.
,
89
(
13
), pp.
1121
1139
.
44.
Stanev
,
L.
,
Drenchev
,
B.
,
Yotov
,
A.
, and
Lazarova
,
R.
,
2014
, “
Compressive Properties and Energy Absorption Behaviour of AlSi10Mg Open-Cell Foam
,”
J. Mater. Sci. Technol.
,
22
(
1
), pp.
44
53
.
45.
Gibson
,
M. F.
, and
Gibson
,
L. J.
,
1997
,
Cellular Solids Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
46.
Avalle
,
M.
,
Belingardi
,
G.
, and
Montanini
,
R.
,
2001
, “
Characterization of Polymeric Structural Foams Undercompressive Impact Loading by Means of Energy-Absorption Diagram
,”
Int. J. Impact Eng.
,
25
(
5
), pp.
455
472
.
47.
Cao
,
X. Q.
,
Wang
,
Z. H.
, and
Ma
,
H. W.
,
2006
, “
Effects of Cell Size on Compressive Properties of Aluminum Foam
,”
Trans. Nonferrous Met. Soc. China
,
16
(
2
), pp.
351
356
.
48.
Wang
,
Q. Z.
,
Cui
,
C. X.
,
Liu
,
S. J.
, and
Zhao
,
L. C.
,
2010
, “
Open-Celled Porous Cu Prepared by Replication of NaCl Space-Holders
,”
Mater. Sci. Eng. A
,
527
(
4–5
), pp.
1275
1278
.
49.
Ma
,
Z.
,
Han
,
F.
,
Wei
,
J.
, and
Gao
,
J.
,
2001
, “Effects of Macroscopic Defects on the Damping Behavior of Aluminum and Zn-27 Pct Al Alloy,”
Metall. Mater. Trans. A
,
32
(
10
), p.
2657
.
50.
Nakajima
,
H.
,
Hyun
,
S. K.
,
Ohashi
,
K.
,
Ota
,
K.
, and
Murakami
,
K.
,
2001
, “
Fabrication of Porous Copper by Unidirectional Solidification Under Hydrogen and Its Properties
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
179
(2–3), pp.
209
214
.
51.
Wang
,
Q. Z.
,
Lu
,
D. M.
,
Cui
,
C. X.
, and
Liang
,
L. M.
,
2011
, “
Compressive Behaviors and Energy-Absorption Properties of an Open-Celled Porous Cu Fabricated by Replication of NaCl Space-Holders
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
363
367
.
52.
Yao
,
D.
,
Liu
,
X. H.
,
Liu
,
X. F.
, and
Xie
,
J. X.
,
2008
,
Chin. J. Nonferrous Met.
,
18
, p.
1995
.
53.
Hangai
,
Y.
,
Zushida
,
K.
,
Fujii
,
H.
,
Ueji
,
R.
,
Kuwazuru
,
O.
, and
Yoshikawa
,
N.
,
2013
, “
Friction Powder Compaction Process for Fabricating Open-Celled Cu Foam by Sintering-Dissolution Process Route Using NaCl Space Holder
,”
Mater. Sci. Eng. A
,
585
, pp.
468
474
.
54.
Parvanian
,
A. M.
, and
Panjepour
,
M.
,
2013
, “
Mechanical Behavior Improvement of Open-Pore Copper Foams Synthesized Through Space Holder Technique
,”
Mater. Des.
,
49
, pp.
834
841
.
55.
Zhang
,
Y. P.
, and
Zhao
,
Y. Y.
,
2008
, “Fabrication of High Melting-Point Porous Metals by Lost Carbonate Sintering Process Via Decomposition Route,”
Proc. Inst. Mech. Eng. Part B
,
222
(
2
), pp.
267
271
.
56.
Zhang
,
Z. G.
,
Gesmundo
,
F.
,
Hou
,
P. Y.
, and
Niu
,
Y.
,
2006
, “
Criteria for the Formation of Protective Al2O3 Scales on Fe–Al and Fe–Cr–Al Alloys
,”
Corros. Sci.
,
48
(
3
), pp.
741
765
.
57.
Zhu
,
X.
,
Schoenitzc
,
M.
, and
Dreizin
,
E. L.
,
2006
, “Oxidation of Mechanically Alloyed Al-rich Al -Ti Powders,”
Oxid. Met.
,
65
, pp.
357
376
.
58.
Golabgir
,
M. H.
,
Ebrahimi-Kahrizsangi
,
R.
,
Torabi
,
O.
,
Tajizadegan
,
H.
, and
Jamshidi
,
A.
,
2014
, “Fabrication and Evaluation of Oxidation Resistance Performance of Open-Celled Fe(Al) Foam by Space-Holder Technique,”
Adv. Powder Technol.
,
25
(
3
), pp.
960
967
.
59.
Golabgir
,
M. H.
,
Ebrahimi-Kahrizsangi
,
R.
,
Torabi
,
O.
, and
Saatchi
,
A.
,
2015
, “
Fabrication of Open Cell Fe-10% Al Foam by Space-Holder Technique
,”
Arch. Metall. Mater.
,
59
(
1
), pp.
41
45
.
60.
Yu
,
S.
,
Liu
,
J.
,
Wei
,
M.
,
Luo
,
Y.
,
Zhu
,
X.
, and
Liu
,
Y.
,
2009
, “
Compressive Property and Energy Absorption Characteristic of Open-Cell ZA22 Foams
,”
Mater. Des.
,
30
(
1
), pp.
87
90
.
61.
Arifvianto
,
B.
,
Leeflang
,
M. A.
, and
Zhou
,
J.
,
2014
, “
A New Technique for the Characterization of the Water Leaching Behavior of Space Holding Particles in the Preparation of Biomedical Titanium Scaffolds
,”
Mater. Lett.
,
120
, pp.
204
207
.
62.
Jamshidi-Alashti
,
R.
,
Kaskani
,
M.
, and
Niroumand
,
B.
,
2014
, “
Semisolid Melt Squeezing Procedure for Production of Open-Cell Al–Si Foams
,”
Mater. Des.
,
56
, pp.
325
333
.
63.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2013
, “
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
,”
J. Mater. Sci. Technol.
,
29
(
4
), pp.
297
316
.
64.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.
65.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
66.
Zhou
,
X. Y.
,
Li
,
J.
,
Long
,
B.
, and
Huo
,
D. W.
,
2006
,
Mater. Sci. Eng. A
,
40
, pp.
435
436
.
67.
Wenjuan
,
N.
,
Chenguang
,
B.
,
Gui Bao
,
Q.
, and
Qiang
,
W.
,
2009
,
Mater. Sci. Eng. A
,
506
, pp.
148
151
.
68.
Liu
,
P. S.
, and
Liang
,
K. M.
,
2001
, “
Review Functional Materials of Porous Metals Made by P/M, Electroplating and Some Other Techniques
,”
J. Mater. Sci.
,
36
(
21
), pp.
5059
5072
.
69.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
, p.
103
.
70.
Hartman
,
A. D.
,
Gerdemann
,
S. J.
, and
Hansen
,
J. S.
,
1998
, “
Producing Lower-Cost Titanium for Automotive Applications
,”
J. Miner. Met. Mater.
,
50
(
9
), pp.
16
19
.
71.
Geetha
,
M.
,
Singh
,
A. K.
,
Asokamani
,
R.
, and
Gogia
,
A. K.
,
2009
, “
Ti Based Biomaterials: The Ultimate Choice for Orthopaedic Implants—A Review
,”
Prog. Mater. Sci.
,
54
(
3
), pp.
397
425
.
72.
Rack
,
H. J.
, and
Qazi
,
J. I.
,
2006
, “
Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1269
1277
.
73.
Spoerke
,
E. D.
,
Murray
,
N. G.
,
Li
,
H.
,
Brinson
,
L. C.
,
Dunand
,
D. C.
, and
Stupp
,
S. I.
,
2005
, “
A Bioactive Titanium Foam Scaffold for Bone Repair
,”
Acta Biomater.
,
1
(
5
), pp.
523
533
.
74.
Heinl
,
P.
,
Muller
,
L.
,
Korner
,
C.
,
Singer
,
R. F.
, and
Muller
,
F. A.
,
2008
, “
Cellular Ti-6Al-4V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
75.
Oh
,
I. H.
,
Nomura
,
N.
,
Masahashi
,
N.
, and
Hanada
,
S.
,
2003
, “
Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering
,”
Scr. Mater.
,
49
(
12
), pp.
1197
1202
.
76.
Jorgensen
,
D. J.
, and
Dunand
,
D. C.
,
2010
, “
Ti-6Al-4V With Micro- and Macropores Produced by Powder Sintering and Electrochemical Dissolution of Steel Wires
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
849
853
.
77.
Karachalios
,
T.
,
Tsatsaronis
,
C.
,
Efraimis
,
G.
,
Papadelis
,
P.
,
Lyritis
,
G.
, and
Diakoumopoulos
,
G.
,
2004
, “
The Long-Term Clinical Relevance of Calca Atrophy by Stress Shielding in Total Hip Arthroplasty
,”
J. Arthroplasty
,
19
(
4
), pp.
469
475
.
78.
Njoku
,
R. E.
, and
Kennedy
,
A. R.
,
2013
, “
Effects of Sintering Temperature on the Density and Porosity of Sodium Chloride Preforms for Open Celled Aluminium Foam Manufacturing
,”
Niger. J. Technol.
,
32
(
1
), pp.
117
122
.
79.
Han
,
F.
,
Seiffert
,
G.
,
Zhao
,
Y.
, and
Gibbs
,
B.
,
2003
, “
Acoustic Absorption Behaviour of an Open-Celled Aluminium Foam
,”
J. Phys. D: Appl. Phys.
,
36
(
3
), pp.
294
302
.
You do not currently have access to this content.