This article presents a review of current methods for production of metallic open-cell porous materials through space holders. The methods are divided into two major groups: on the basis of sintering and using liquid phase processing. Details about technologies are given, and their relations to structure parameters of obtained materials are discussed. Methods with 11 different space holders are described. The space holders could be metallic or nonmetallic (organic and inorganic) materials which could be leached or burned depending on removal technique. It is concluded that the flexible application of different space holders offers opportunities for obtaining large variety of metallic porous structures. A new line of development should be elaboration of complex techniques for production of porous structure with graded pore size and/or porosity which will meet various engineering requirements and will open new possibilities for applications as functional and structural elements. The next part of this work is devoted to the structure, the properties, and application of the open-cells porous materials obtained through space holders.

References

References
1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston, MA
.
2.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.
3.
Aerogel.org,
2008
, “
Silica Aerogel
,”
Aerogel.org
.
4.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
5.
Shapovalov
,
V. I.
,
1993
, “
Method for Manufacturing Porous Articles
,”
U.S. Patent No. 5,181,549
.
6.
Nakajima
,
H.
,
Hyun
,
S. K.
,
Park
,
J. S.
, and
Tane
,
M.
,
2007
,
Materials Science Forum
, Trans Tech Publications, Pfaffikon, Switzerland, pp.
539
543
.
7.
Drenchev
,
L.
, and
Sobczak
,
J.
,
2009
,
GASARS—A Specific Class of Porous Materials
,
Motor Transport Institute
,
Warsaw
, Poland.
8.
Gergely
,
V.
, and
Clyne
,
T. W.
,
2000
, “
The FORMGRIP Process: Foaming of Reinforced Metals by Gas Release in Precursors
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
175
178
.
9.
Sobczak
,
J.
,
Sobczak
,
N.
,
Asthana
,
R.
,
Woiciechowski
,
A.
,
Pietrzak
,
K.
, and
Rudnik
,
D.
,
2007
,
ATLAS of Metal-Matrix Composite Structures
,
Motor Transport Institute, Warsaw, Poland, Foundry Research Institute
, Krakow, Poland.
10.
Soubielle
,
S.
,
Diologent
,
F.
,
Salvo
,
L.
, and
Mortensen
,
A.
,
2011
, “
Creep of Replicated Microcellular Aluminium
,”
Acta Mater.
,
59
(
2
), pp.
440
450
.
11.
Xie
,
Z. K.
,
Ikeda
,
T.
,
Okuda
,
Y.
, and
Nakajima
,
H.
,
2004
, “
Sound Absorbtion Characteristics of Lotus-Type Porous Copper Fabricated by Unidirectional Solidification
,”
Mater. Sci. Eng. A
,
386
(
1–2
), pp.
390
395
.
12.
Catalin
,
P.
,
Katsumata
,
K.
,
Isobe
,
T.
,
Matsushita
,
N.
,
Nakajima
,
A.
,
Kurata
,
T.
, and
Okada
,
K.
,
2013
, “
Preparation and Characterization of Lotus Ceramics With Different Pore Sizes and Their Implication for the Generation of Microbubbles for CO2 Sequestration Applications
,”
Ceram. Int.
,
39
, pp.
1443
1449
.
13.
Ye
,
B.
, and
Dunand
,
D.
,
2010
, “
Titanium Foams Produced by Solid-State Replication of NaCl Powders
,”
Mater. Sci. Eng. A
,
528
(
2
), pp.
691
697
.
14.
Aida
,
S. F.
,
Hijrah
,
M. N.
,
Amirah
,
A. H.
,
Zuhailawati
,
H.
, and
Anasyida
,
A. S.
,
2016
, “
Effect of NaCl as a Space Holder in Producing Open Cell A356 Aluminium Foam by Gravity Die Casting Process
,”
Proc. Chem.
,
19
, pp.
234
240
.
15.
Ikeda
,
T.
,
Aoki
,
T.
, and
Nakajima
,
H.
,
2005
, “
Fabrication of Lotus-Type Porous Stainless Steel by Continuous Zone Melting Technique and Mechanical Property
,”
Metall. Mater. Trans. A
,
36
(
1
), pp.
77
86
.
16.
Ota
,
K.
,
Ohashi
,
K.
, and
Nakajima
,
H.
,
2003
, “
Internal Friction in Lotus-Type Porous Copper With Hydrogen Pores
,”
Mater. Sci. Eng. A
,
341
(
1
), pp.
139
143
.
17.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2009
,
Metal Based Functionally Graded Materials (Engineering and Modeling)
,
Bentham Science Publisher
, UAE.
18.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2013
, “
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
,”
J. Mater. Sci. Technol.
,
29
(
4
), pp.
297
316
.
19.
Kennedy
,
A.
,
2012
,
Powder Metallurgy
,
InTech
, Rijeka, Croatia, Chap. 2.
20.
Rendón
,
M. V.
,
Calderón
,
J. A.
, and
Fernández
,
P.
,
2011
, “
Evaluation of the Corrosion Behavior of the Al-356 Alloy in NaCl Solutions
,”
Quim. Nova
,
34
(
7
), pp.
1163
1166
.
21.
Wang
,
Q. Z.
,
Cui
,
C. X.
,
Liu
,
S. J.
, and
Zhao
,
L. C.
,
2010
, “
Open-Celled Porous Cu Prepared by Replication of NaCl Space-Holders
,”
Mater. Sci. Eng. A
,
527
(
4–5
), pp.
1275
1278
.
22.
Wang
,
Q. Z.
,
Lu
,
D. M.
,
Cui
,
C. X.
, and
Liang
,
L. M.
,
2011
, “
Compressive Behaviors and Energy-Absorption Properties of an Open-Celled Porous Cu Fabricated by Replication of NaCl Space-Holders
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
363
367
.
23.
Hangai
,
Y.
,
Zushida
,
K.
,
Fujii
,
H.
,
Ueji
,
R.
,
Kuwazuru
,
O.
, and
Yoshikawa
,
N.
,
2013
, “
Friction Powder Compaction Process for Fabricating Open-Celled Cu Foam by Sintering-Dissolution Process Route Using NaCl Space Holder
,”
Mater. Sci. Eng.: A
,
585
, pp.
468
474
.
24.
Kobashi
,
M.
,
Miyake
,
S.
, and
Kanetake
,
N.
,
2013
, “
Hierarchical Open Cellular Porous TiAl Manufactured by Space Holder Process
,”
Intermetallics
,
42
, pp.
32
34
.
25.
Jha
,
N.
,
Mondal
,
D. P.
,
Majumdar
,
J. D.
,
Badkul
,
A.
,
Jha
,
A. K.
, and
Khare
,
A. K.
,
2013
, “
Highly Porous Open Cell Ti-Foam Using NaCl as Temporary Space Holder Through Powder Metallurgy Route
,”
Mater. Des.
,
47
, pp.
810
819
.
26.
Lee
,
D. J.
,
Jung
,
J. M.
,
Latypov
,
M. I.
,
Lee
,
B.
,
Jeong
,
J.
,
Oh
,
S. H.
,
Lee
,
C. S.
, and
Kim
,
H. S.
,
2014
, “
Three-Dimensional Real Structure-Based Finite Element Analysis of Mechanical Behavior for Porous Titanium Manufactured by a Space Holder Method
,”
Comput. Mater. Sci.
,
100
(Pt A), pp.
2
7
.
27.
Torres
,
Y.
,
Pavón
,
J.
,
Trueba
,
P.
,
Cobos
,
J.
, and
Rodriguez-Ortiz
,
J. A.
,
2014
, “
Design, Fabrication and Characterization of Titanium With Graded Porosity by using Space-Holder Technique
,”
Proc. Mater. Sci.
,
4
, pp.
115
119
.
28.
Torres
,
Y.
,
Pavón
,
J. J.
,
Nieto
,
I.
, and
Rodríguez
,
J. A.
,
2011
, “
Conventional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications
,”
Metall. Mater. Trans. B
,
42
(
4
), pp.
891
900
.
29.
Golabgir
,
M. H.
,
Ebrahimi-Kahrizsangi
,
R.
,
Torabi
,
O.
,
Tajizadegan
,
H.
, and
Jamshidi
,
A.
,
2014
, “
Fabrication and Evaluation of Oxidation Resistance Performance of Open-Celled Fe(Al) Foam by Space-Holder Technique
,”
Adv. Powder Technol.
,
25
(
3
), pp.
960
967
.
30.
Golabgir
,
M. H.
,
Ebrahimi-Kahrizsangi
,
R.
,
Torabi
,
O.
, and
Saatchi
,
A.
,
2015
, “
Fabrication of Open Cell Fe-10% Al Foam by Space-Holder Technique
,”
Arch. Metall. Mater.
,
59
(
1
), pp.
41
45
.
31.
Sirong
,
Y.
,
Jiaan
,
L.
,
Ming
,
W.
,
Yanru
,
L.
,
Xianyong
,
Z.
, and
Yaohui
,
L.
,
2009
, “
Compressive Property and Energy Absorption Characteristic of Open-Cell ZA22 Foams
,”
Mater. Des.
,
30
, pp.
87
90
.
32.
Łazińska
,
M.
,
Durejko
,
T.
,
Lipiński
,
S.
,
Polkowski
,
W.
,
Czujko
,
T.
, and
Varin
,
R. A.
,
2015
, “
Porous Graded FeAl Intermetallic Foams Fabricated by Sintering Process Using NaCl Space Holders
,”
Mater. Sci. Eng. A
,
636
, pp.
407
414
.
33.
Hussain
,
Z.
, and
Suffin
,
N. S. A.
,
2011
, “
Microstructure and Mechanical Behaviour of Aluminium Foam Produced by Sintering Dissolution Process Using NaCl Space Holder
,”
J. Eng. Sci.
,
7
, pp.
37
49
.
34.
Xingfu
,
W.
,
Zhendong
,
L.
,
Yingjie
,
H.
,
Kun
,
W.
,
Xinfu
,
W.
, and
Fusheng
,
H.
,
2014
, “
Processing of Magnesium Foams by Weakly Corrosive and Highly Flexible Space Holder Materials
,”
Mater. Des.
,
64
, pp.
324
329
.
35.
Sochon
,
R. P. J.
,
Dorvlo
,
S. K.
,
Rudd
,
A. I.
,
Hayati
,
I.
,
Hounslow
,
M. J.
, and
Salman
,
A. D.
,
2005
, “
Granulation of Zinc Oxide
,”
Chem. Eng. Res. Des.
,
83
(
11
), pp.
1325
1330
.
36.
Polonsky
,
L.
,
Lipson
,
S.
, and
Markus
,
H.
,
1961
, “
Lightweight Cellular Metal
,”
Modern Cast.
,
39
, pp. 57–71.
37.
San Marchi
,
C.
,
Despois
,
J. F.
, and
Mortensen
,
A.
,
1999
, “
Fabrication and Compressive Response of Open-Cell Aluminum Foams With Sub-Millimeter Pores
,”
Euromat 99
,
T. W.
Clyne
and
F.
Simancik
, eds., Wiley, Munich, Germany, p.
34
.
38.
San Marchi
,
C.
, and
Mortensen
,
A.
,
2001
, “
Deformation of Open-Cell Aluminum Foam
,”
Acta Mater.
,
49
(
19
), pp.
3959
3969
.
39.
Despois
,
J. F.
, and
Mortensen
,
A.
,
2005
, “
Permeability of Open-Pore Microcellular Materials
,”
Acta Mater.
,
53
(
5
), pp.
1381
1388
.
40.
Diologent
,
F.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2009
, “
Creep of Aluminium–Magnesium Open Cell Foam
,”
Acta Mater.
,
57
(
3
), pp.
351
354
.
41.
Diologent
,
F.
,
Goodall
,
R.
, and
Mortensen
,
A.
,
2009
, “
Surface Oxide in Replicated Microcellular Aluminium and Its Influence on the Plasticity Size Effect
,”
Acta Mater.
,
57
(
1
), pp.
286
294
.
42.
San Marchi
,
C.
, and
Mortensen
,
A.
,
2002
,
Handbook of Cellular Materials
, H. P. Degischer, ed., Wiley-VCH, Weinheim, pp. 44–51.
43.
Stanev
,
L.
,
Drenchev
,
B.
,
Yotov
,
A.
, and
Lazarova
,
R.
,
2014
, “
Compressive Properties and Energy Absorption Behaviour of AlSi10Mg Open-Cell Foam
,”
J. Mater. Sci. Technol.
,
22
(
1
), pp.
44
53
.
44.
Diologent
,
F.
,
Combaz
,
E.
,
Laporte
,
V.
,
Goodall
,
R.
,
Weber
,
L.
,
Duc
,
F.
, and
Mortensen
,
A.
,
2009
, “
Processing of Ag–Cu Alloy Foam by the Replication Process
,”
Scr. Mater.
,
61
(
4
), pp.
351
354
.
45.
Hansen
,
N.
, and
Anderko
,
K.
,
1958
,
Constitution of Binary Alloys
,
McGraw-Hill
,
New York
.
46.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2001
,
Materials Science and Engineering Handbook
,
CRC Press
,
Boca Raton, FL
.
47.
L'Vov
,
B. V.
, and
Ugolkov
,
V. L.
,
2004
, “
Kinetics of Free-Surface Decomposition of Magnesium and Barium Sulfates Analyzed Thermogravimetrically by the Third-Law Method
,”
Thermochim. Acta
,
411
(
1
), pp.
73
79
.
48.
Brusic
,
V.
,
Frisch
,
M. A.
,
Eldridge
,
B. N.
,
Novak
,
F. P.
,
Kaufman
,
F. B.
,
Rush
,
B. M.
, and
Frankel
,
G. S.
,
1991
, “
Copper Corrosion With and Without Inhibitors
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2253
2259
.
49.
Bafti
,
H.
, and
Habibolahzadeh
,
A.
,
2013
, “
Compressive Properties of Aluminum Foam Produced by Powder-Carbamide Spacer Route
,”
Mater. Des.
,
52
, pp.
404
411
.
50.
Bafti
,
H.
, and
Habibolahzadeh
,
A.
,
2010
, “
Production of Aluminum Foam by Spherical Carbamide Space Holder Technique-Processing Parameters
,”
Mater. Des.
,
31
(
9
), pp.
4122
4129
.
51.
Jie
,
W.
,
Hong-Zhi
,
C.
,
Li-Li
,
C.
, and
Zheng-Zheng
,
G.
,
2011
, “
Open-Celled Porous NiAl Intermetallics Prepared by Replication of Carbamide Space-Holders
,”
Trans. Nonferrous Met. Soc. China
,
21
(
8
), pp.
1750
1754
52.
Sharma
,
M.
,
Gupta
,
G. K.
,
Modi
,
O. P.
,
Prasad
,
B. K.
, and
Gupta
,
A. K.
,
2011
, “
Titanium Foam Through Powder Metallurgy Route Using Acicular Urea Particles as Space Holder
,”
Mater. Lett.
,
65
(
21–22
), pp.
3199
3201
.
53.
Arifvianto
,
B.
,
Leeflang
,
M. A.
, and
Zhou
,
J.
,
2014
, “
A New Technique for the Characterization of the Water Leaching Behavior of Space Holding Particles in the Preparation of Biomedical Titanium Scaffolds
,”
Mater. Lett.
,
120
, pp.
204
207
.
54.
Alizadeh
,
M.
, and
Mirzaei-Aliabadi
,
M.
,
2012
, “
Compressive Properties and Energy Absorption Behavior of Al–Al2O3 Composite Foam Synthesized by Space-Holder Technique
,”
Mater. Des.
,
35
, pp.
419
424
.
55.
Esen
,
Z.
, and
Bor
,
Ş.
,
2011
, “
Characterization of Ti–6Al–4V Alloy Foams Synthesized by Space Holder Technique
,”
Mater. Sci. Engi.: A
,
528
(
7–8
), pp.
3200
3209
.
56.
Aşık
,
E.
, and
Bor
,
Ş.
,
2015
, “
Fatigue Behavior of Ti–6Al–4V Foams Processed by Magnesium Space Holder Technique
,”
Mater. Sci. Eng. A
,
621
, pp.
157
165
.
57.
Nakaş
,
G.
,
Dericioğlu
,
A. F.
, and
Bor
,
Ş.
,
2013
, “
Monotonic and Cyclic Compressive Behavior of Superelastic TiNi Foams Processed by Sintering Using Magnesium Space Holder Technique
,”
Mater. Sci. Eng. A
,
582
, pp.
140
146
.
58.
Aydoğmuş
,
T.
, and
Bor
,
Ş.
,
2009
, “
Processing of Porous TiNi Alloys Using Magnesium as Space Holder
,”
J. Alloys Compd.
,
478
(
1–2
), pp.
705
710
.
59.
Kim
,
S. W.
,
Jung
,
H. D.
,
Kang
,
M. H.
,
Kim
,
H. E.
,
Koh
,
Y. H.
, and
Estrin
,
Y.
,
2013
, “
Fabrication of Porous Titanium Scaffold With Controlled Porous Structure and Net-Shape Using Magnesium as Spacer
,”
Mater. Sci. Eng. C
,
33
(
5
), pp.
2808
2815
.
60.
Michailidis
,
N.
,
Stergioudi
,
F.
,
Tsouknidas
,
A.
, and
Pavlidou
,
E.
,
2011
, “
Compressive Response of Al-Foams Produced Via a Powder Sintering Process Based on a Leachable Space-Holder Material
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1662
1667
.
61.
Jakubowicz
,
J.
,
Adamek
,
G.
,
Pałka
,
K.
, and
Andrzejewski
,
D.
,
2015
, “
Micro-CT Analysis and Mechanical Properties of Ti Spherical and Polyhedral Void Composites Made With Saccharose as a Space Holder Material
,”
Mater. Charact.
,
100
, pp.
13
20
.
62.
Jakubowicz
,
J.
,
Adamek
,
G.
, and
Dewidar
,
M.
,
2013
, “
Titanium Foam Made With Saccharose as a Space Holder
,”
J. Porous Mater.
,
20
(
5
), pp.
1137
1141
.
63.
Mondal
,
D. P.
,
Patel
,
M.
,
Jain
,
H.
,
Jha
,
A. K.
,
Das
,
S.
, and
Dasgupta
,
R.
,
2015
, “
The Effect of the Particle Shape and Strain Rate on Microstructure and Compressive Deformation Response of Pure Ti-Foam Made Using Acrowax as Space Holder
,”
Mater. Sci. Eng. A
,
625
, pp.
331
334
.
64.
Changshu
,
X.
,
Yan
,
Z.
,
Zengfeng
,
L.
,
Hanliang
,
Z.
,
Yuanping
,
H.
, and
Huiping
,
T.
,
2012
, “
Preparation and Compressive Behavior of Porous Titanium Prepared by Space Holder Sintering Process
,”
Proc. Eng.
,
27
, pp.
768
774
.
65.
Hsu
,
H.
,
Wu
,
S.
,
Hsu
,
S.
,
Tsai
,
M.
,
Chang
,
T.
, and
Ho
,
W.
,
2013
, “
Processing and Mechanical Properties of Porous Ti–7.5Mo Alloy
,”
Mater. Des.
,
47
, pp.
21
26
.
66.
Parvanian
,
A. M.
, and
Panjepour
,
M.
,
2013
, “
Mechanical Behavior Improvement of Open-Pore Copper Foams Synthesized Through Space Holder Technique
,”
Mater. Des.
,
49
, pp.
834
841
.
67.
Zhao
,
Y. Y.
,
Fung
,
T.
,
Zhang
,
L. P.
, and
Zhang
,
F. L.
,
2005
, “
Lost Carbonate Sintering Process for Manufacturing Metal Foams
,”
Scr. Mater.
,
52
(
4
), pp.
295
298
.
68.
Mansourighasri
,
A.
,
Muhamad
,
N.
, and
Sulong
,
A. B.
,
2012
, “
Processing Titanium Foams Using Tapioca Starch as a Space Holder
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
83
89
.
69.
Engin
,
G.
,
Aydemir
,
B.
, and
Gülsoy
,
H. Ö.
,
2011
, “
Injection Molding of Micro-Porous Titanium Alloy With Space Holder Technique
,”
Rare Met.
,
30
(
6
), pp.
565
571
.
70.
Chino
,
Y.
, and
Dunand
,
D. C.
,
2008
, “
Directionally Freeze-Cast Titanium Foam With Aligned, Elongated Pores
,”
Acta Mater.
,
56
(
1
), pp.
105
113
.
71.
Tang
,
Y.
,
Miao
,
Q.
,
Qiu
,
S.
,
Zhao
,
K.
, and
Hu
,
L.
,
2011
, “
Novel Freeze-Casting Fabrication of Aligned Lamellar Porous Alumina With a Centrosymmetric Structure
,”
J. Eur. Ceram. Soc.
,
34
(
15
), pp.
4077
4082
.
72.
Li
,
J. C.
, and
Dunand
,
D. C.
,
2011
, “
Mechanical Properties of Directionally Freeze-Cast Titanium Foams
,”
Acta Mater.
,
59
(
1
), pp.
146
158
.
73.
Bewerse
,
C.
,
Emery
,
A. A.
,
Brinson
,
L. C.
, and
Dunand
,
D. C.
,
2015
, “
NiTi Porous Structure With 3D Interconnected Microchannels Using Steel Wire Spaceholders
,”
Mater. Sci. Eng. A
,
634
, pp.
153
160
.
74.
Neurohr
,
A. J.
, and
Dunand
,
D. C.
,
2011
, “
Shape-Memory NiTi With Two-Dimensional Networks of Micro-Channels
,”
Acta Biomater.
,
7
(
4
), pp.
1862
1872
.
75.
Neurohr
,
A. J.
, and
Dunand
,
D. C.
,
2011
, “
Mechanical Anisotropy of Shape-Memory NiTi With Two-Dimensional Networks of Micro-Channels
,”
Acta Mater.
,
59
(
11
), pp.
4616
4630
.
76.
Bewerse
,
C.
,
Brinson
,
L. C.
, and
Dunand
,
D. C.
,
2014
, “
NiTi With 3D-Interconnected Microchannels Produced by Liquid Phase Sintering and Electrochemical Dissolution of Steel Tubes
,”
J. Mater. Process. Technol.
,
214
(
9
), pp.
1895
1899
.
77.
Yook
,
S.-W.
,
Jung
,
H.-D.
,
Park
,
C.-H.
,
Shin
,
K.-H.
,
Koh
,
Y.-H.
,
Estrin
,
Y.
, and
Kim
,
H.-E.
,
2012
, “
Reverse Freeze Casting: A New Method for Fabricating Highly Porous Titanium Scaffolds With Aligned Large Pores
,”
Acta Biomater.
,
8
(
6
), pp.
2401
2410
.
You do not currently have access to this content.