As one of emerging novel surface treatment techniques, laser polishing offers a cost-effective and efficient solution to reduce surface roughness of precision components at micro-/mesoscale. Although it has been applied for industrial and biomedical purposes, the underlying mechanism has not been fully revealed. This paper presents a study to understand the basic fundamentals of continuous wave fiber laser polishing of Ti6Al4V samples. A two-dimensional numerical model that coupled heat transfer and fluid flow is developed to illustrate the molten flow behavior. The roles of capillary and thermocapillary flow in the process of laser polishing are investigated to assist the understanding of the contributions of surface tension (capillary force) and Marangoni effect (thermocapillary force) in the polishing process. Capillary force dominates the molten pool at the initial stage of melting, while thermocapillary force becomes predominant when the molten pool fully develops.

References

References
1.
Bereznai
,
M.
,
Pelsoczi
,
I.
,
Toth
,
Z.
,
Turzo
,
K.
,
Radnai
,
M.
,
Bor
,
Z.
, and
Fazekas
,
A.
,
2013
, “
Surface Modifications Induced by NS and Sub-PS Excimer Laser Pulses on Titanium Implant Material
,”
Biomaterials
,
24
(
23
), pp.
4197
4203
.
2.
Steyn
,
J.
,
Naidoo
,
K.
, and
Land
,
K.
,
2007
, “
Improvement of the Surface Finish Obtained by Laser Ablation With a Nd:YAG Laser on Pre-Ablated Tool Steel
,”
International Conference on Competitive Manufacturing
, Stellenbosch, South Africa.
3.
Dobrev
,
T.
,
Phain
,
D.
, and
Dimov
,
S.
,
2008
, “
Techniques for Improving Surface Quality After Laser Milling
,”
Proc. Inst. Mech. Eng., Part B
,
222
(
1
), pp.
55
65
.
4.
Hua
,
M.
,
SeDao
,
S. T. M.
, and
Tam
,
H.
,
2007
, “
Surface Transformation of DF-2 Steel After Continuous Mode Laser Irradiation
,”
J. Mater. Process. Technol.
,
192–193
(
1–7
), pp.
89
96
.
5.
Hua
,
M.
,
Shao
,
T.
, and
Hong
,
Y. T.
,
2004
, “
ECH Man. Influence of Pulse Duration on the Surface Morphology of ASSAB DF-2 (AISI-01) Cold Work Steel Treated by YAG Laser
,”
Surf. Coat. Technol.
,
185
(
2–3
), pp.
127
136
.
6.
Guo
,
W.
,
2007
, “
Effect of Irradiation Parameters on Morphology of Polishing DF2 (AISI-O1) Surface by Nd:YAG Laser
,”
Res. Lett. Mater. Sci.
,
2007
, p.
51316
.
7.
Marinescu
,
N. I.
,
Ghiculescu
,
D.
, and
Anger
,
C.
,
2008
, “
Correlation Between Laser Finishing Technological Parameters and Materials Absorption Capacity
,”
Int. J. Mater. Form.
,
1
(
1
), pp.
1359
1362
.
8.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2009
, “
The Effect of Laser Pulse Width and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031002
.
9.
Hafiz
,
A. M. K.
,
Bordatchev
,
E.
, and
Tutunea-Fatan
,
O. R.
,
2012
, “
Influence of Overlap Between the Laser Beam Tracks on Surface Quality in Laser Polishing of AISI H13 Tool Steel
,”
J. Manuf. Process.
,
14
(
4
), pp.
425
434
.
10.
Kim
,
Y. G.
,
Ryu
,
J. K.
,
Kim
,
D. J.
,
Kim
,
H. J.
,
Lee
,
S.
,
Cha
,
B. H.
,
Cha
,
H.
, and
Kim
,
C. J.
,
2004
, “
Microroughness Reduction of Tungsten Films by Laser Polishing Technology With a Line Beam
,”
Jpn. J. Appl. Phys.
,
43
(4A), pp.
1315
1322
.
11.
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Li
,
X.
,
Vadali
,
M.
, and
Ma
,
C.
,
2013
, “
Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow
,”
CIRP Ann.-Manuf. Technol.
,
62
(
1
), pp.
203
206
.
12.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2013
, “
Effects of Laser Pulse Duration on Pulsed Laser Micro Polishing
,”
ASME J. Micro- Nano-Manuf.
,
1
(
1
), p.
011006
.
13.
Nüsser
,
C.
,
Wehrmann
,
I.
, and
Willenborg
,
E.
,
2011
, “
Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing
,”
Phys. Proc.
,
12
(Pt. A), pp.
462
471
.
14.
Pirch
,
N.
,
Höges
,
S.
, and
Wissenbach
,
K.
,
2006
, “
Mechanisms of Surface Rippling During Laser Polishing
,”
8th International Seminar on Numerical Analysis of Weldability
, Graz-Seggau, Austria, pp. 25–37.
15.
Nüsser
,
C.
,
Kumstel
,
J.
,
Kiedrowski
,
T.
,
Diatlov
,
A.
, and
Willenborg
,
E.
,
2015
, “
Process- and Material-Induced Surface Structures During Laser Polishing
,”
Adv. Eng. Mater.
,
17
(
3
), pp.
268
277
.
16.
Lamikiz
,
A.
,
Sanchez
,
J. A.
,
Lopez de Lacalle
,
L. N.
, and
Arana
,
J. L.
,
2007
, “
Laser Polishing of Parts Built Up by Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
2040
2050
.
17.
Lamikiz
,
A.
,
Sanchez
,
J. A.
,
Lopez de Lacalle
,
L. N.
,
del Pozo
,
D.
,
Etayo
,
J. M.
, and
Lopez
,
J. M.
,
2007
, “
Laser Polishing Techniques for Roughness Improvement on Metallic Surfaces
,”
Int. J. Nanomanuf.
,
1
(
4
), pp.
490
498
.
18.
Ukar
,
E.
,
Lamikiz
,
A.
,
Lopez de Lacalle
,
L. N.
,
del Pozo
,
D.
,
Liebana
,
F.
, and
Sanchez
,
A.
,
2010
, “
Laser Polishing Parameter Optimisation on Selective Laser Sintered Parts
,”
Int. J. Mach. Mach. Mater.
,
8
(3–4), pp.
417
432
.
19.
Ukar
,
E.
,
Lamikiz
,
A.
,
Lopez de Lacalle
,
L. N.
,
del Pozo
,
D.
, and
Arana
,
J. L.
,
2010
, “
Laser Polishing of Tool Steel With CO2 Laser and High-Power Diode Laser
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
115
125
.
20.
Marimuthu
,
S.
,
Triantaphyllou
,
A.
,
Antar
,
M.
,
Wimpenny
,
D.
,
Morton
,
H.
, and
Beard
,
M.
,
2015
, “
Laser Polishing of Selective Laser Melted Components
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
97
104
.
21.
Bordatchev
,
E.
,
Hafiz
,
A. M. K.
, and
Tutunea-Fatan
,
O. R.
,
2014
, “
Performance of Laser Polishing in Finishing of Metallic Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
73
(1), pp.
35
52
.
22.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2009
, “
The Effect of Laser Pulse Duration and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031002
.
23.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
2
), p.
021002
.
24.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2009
, “
Pulsed Laser Polishing of Micro-Milled Ti6Al4V Samples
,”
J. Manuf. Process.
,
11
(
2
), pp.
74
81
.
25.
Ma
,
C.
,
Vadali
,
M.
,
Duffie
,
N. A.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.
,
2013
, “
Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061023
.
26.
Ma
,
C.
,
Li
,
X.
,
Vadali
,
M.
,
Duffie
,
N. A.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Analytical and Experimental Investigation of Thermocapillary Flow in Pulsed Laser Micropolishing
,”
ASME J. Micro Nano-Manuf.
,
2
(
2
), p.
021010
.
27.
Carin
,
M.
,
2009
, “
Square Drop Oscillation Under Surface Tension–2D Axisymmetric Model
,” COMSOL Inc., Trondheim, Norway, accessed Oct. 2015, www.comsol.fr/community/exchange
28.
Morville
,
S.
,
Carin
,
M.
,
Muller
,
M.
,
Gharbi
,
M.
,
Peyre
,
P.
,
Carron
,
D.
,
Le Masson
,
P.
, and
Fabbro
,
R.
,
2010
, “
2D Axial-Symmetric Model for Fluid Flow and Heat Transfer in the Melting and Resolidification of a Vertical Cylinder
,”
COMSOL
Conference
, Paris, France.
29.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E. W.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
30.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
31.
Rai
,
R.
,
Burgardt
,
P.
,
Milewski
,
J. O.
,
Lienert
,
T. J.
, and
DebRoy
,
T.
,
2009
, “
Heat Transfer and Fluid Flow During Electron Beam Welding of 21Cr-6Ni-9Mn Steel and Ti-6Al-4V Alloy
,”
J. Phys. D: Appl. Phys.
,
42
(
2
), p.
025503
.
32.
Lips
,
T.
, and
Fritsche
,
B.
,
2005
, “
A Comparison of Commonly Used Re-Entry Analysis Tools
,”
Acta Astronaut.
,
52
(
2–8
), pp.
312
323
.
33.
Frei
,
W.
,
2013
, “
Solutions to Linear Systems of Equations: Direct and Iterative Solvers
,” COMSOL Blog, COMSOL Inc., Trondheim, Norway, accessed Oct. 2015, www.comsol.com/blogs/solutions-linear-systems-equations-direct-iterative-solvers/www.comsol.com/blogs/solutions-linear-systems-equations-direct-iterative-solvers/
You do not currently have access to this content.