Torque influences the main phenomena that occur during friction stir welding (FSW) process. However, models for torque have received little attention. In this paper, inverse problem method is used to estimate the parameters for a model for torque, measured during FSW experiments for different combinations of rotational and welding speeds. The experimental results are used as input data to estimate the model parameters. The results showed a good agreement between the experimental data and the model obtained using the inverse problem method. The influence of the tool geometry on torque was observed by comparing previously published experimental results and the experimental data presented.

References

References
1.
Zhang
,
Z.
, and
Zhang
,
H. W.
,
2014
, “
Solid Mechanics-Based Eulerian Model of Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9
), pp.
1647
1653
.
2.
Singh
,
G.
,
Singh
,
K.
, and
Singh
,
J.
,
2012
, “
Modelling of the Effect of Process Parameters on Tensile Strength of Friction Stir Welded Aluminum Alloy Joints
,”
Exp. Tech. Soc. Exp. Mech.
,
38
(
3
), pp.
63
71
.
3.
Simar
,
A.
,
Bréchet
,
Y.
,
De Meester
,
B.
,
Denquin
,
A.
,
Gallais
,
C.
, and
Pardoen
,
T.
,
2012
, “
Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties
,”
Prog. Mater. Sci.
,
57
(
1
), pp.
95
183
.
4.
Mahoney
,
M. W.
,
Rhodes
,
C. G.
,
Flintoff
,
J. G.
,
Spurling
,
R. A.
, and
Bingel
,
W. H.
,
1998
, “
Properties of Friction-Stir-Welded 7075 T651 Aluminum
,”
Metall. Mater. Trans. A.
,
29
(
7
), pp.
1955
1964
.
5.
Rhodes
,
C. G.
,
Mahoney
,
M. W.
,
Bingel
,
W. H.
,
Spurling
,
R. A.
, and
Bampton
,
C. C.
,
1997
, “
Effects of Friction Stir Welding on Microstructure of 7075 Aluminum
,”
Scr. Mater.
,
36
(
1
), pp.
69
15
.
6.
Rajakumar
,
S.
,
Muralidharan
,
C.
, and
Balasubramanian
,
V.
,
2011
, “
Statistical Analysis to Predict Grain Size and Hardness of the Weld Nugget of Friction-Stir-Welded AA6061-T6 Aluminium Alloy Joints
,”
Int. J. Adv. Manuf. Technol.
,
57
(
1
), pp.
151
165
.
7.
Rajakumar
,
S.
,
Muralidharan
,
C.
, and
Balasubramanian
,
V.
,
2010
, “
Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints
,”
Trans. Nonferrous Met. Soc. China
,
20
(
10
), pp.
1863
1872
.
8.
Qian
,
J.
,
Li
,
J.
,
Sun
,
F.
,
Xiong
,
J.
,
Zhang
,
F.
, and
Lina
,
X.
,
2013
, “
An Analytical Model to Optimize Rotation Speed and Travel Speed of Friction Stir Welding for Defect-Free Joints
,”
Scr. Mater.
,
68
(
3–4
), pp.
175
178
.
9.
Zhao
,
X.
,
Kalya
,
P.
,
Landers
,
R. G.
, and
Krishnamurthy
,
K.
,
2008
, “
Design and Implementation of Nonlinear Force Controllers for Friction Stir Welding Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061011
.
10.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
11.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R
,
50
(
1–2
), pp.
1
78
.
12.
Polar
,
A.
, and
Indacochea
,
J. E.
,
2009
, “
Microstructural Assessment of Copper Friction Stir Welds
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031012
.
13.
Long
,
T.
,
Tang
,
W.
, and
Reynolds
,
A.
,
2007
, “
Process Response Parameter Relationships in Aluminium Alloy Friction Stir Welds
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
311
317
.
14.
Yan
,
J.
,
Sutton
,
M.
, and
Reynolds
,
A.
,
2005
, “
Process–Structure–Property Relationships for Nugget and Heat Affected Zone Regions of AA2524–T351 Friction Stir Welds
,”
Sci. Technol. Weld. Joining
,
10
(
6
), pp.
725
736
.
15.
Khandkar
,
M.
,
Khan
,
J.
, and
Reynolds
,
A.
,
2003
, “
Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model
,”
Sci. Technol. Weld. Joining
,
8
(
3
), pp.
165
174
.
16.
Arora
,
A.
,
Mehta
,
M.
,
De
,
A.
, and
DebRoy
,
T.
,
2012
, “
Load Bearing Capacity of Tool Pin During Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
911
920
.
17.
Mehta
,
M.
,
Arora
,
A.
,
De
,
A.
, and
DebRoy
,
T.
,
2011
, “
Tool Geometry for Friction Stir Welding-Optimum Shoulder Diameter
,”
Metall. Mater. Trans. A
,
42
(
9
), pp.
2716
2722
.
18.
Upadhyay
,
P.
, and
Reynolds
,
A. P.
,
2010
, “
Effects of Thermal Boundary Conditions in Friction Stir Welded AA7050-T7 Sheets
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1537
1543
.
19.
Longhurst
,
W. R.
,
Strauss
,
A. M.
,
Cook
,
G. E.
, and
Fleming
,
P. A.
,
2010
, “
Torque Control of Friction Stir Welding for Manufacturing and Automation
,”
Int. J. Adv. Manuf. Technol.
,
51
(
9–12
), pp.
905
913
.
20.
Gibson
,
B. T.
,
Lammlein
,
D. H.
,
Prater
,
T. J.
,
Longhurstd
,
W. R.
,
Coxa
,
C. D.
,
Balluna
,
M. C.
,
Dharmaraja
,
K. J.
,
Cooka
,
G. E.
, and
Straussa
,
A. M.
,
2014
, “
Friction Stir Welding: Process, Automation, and Control
,”
J. Manuf. Process
,
16
(
1
), pp.
56
73
.
21.
Mendes
,
N.
,
Neto
,
P.
,
Loureiro
,
A.
, and
Moreira
,
A. P.
,
2016
, “
Machines and Control Systems for Friction Stir Welding: A Review
,”
Mater. Des.
,
90
, pp.
256
265
.
22.
Cui
,
S.
, and
Chen
,
Z. W.
,
2009
, “
Effects of Tool Speeds and Corresponding Torque/Energy on Stir Zone Formation During Friction Stir Welding/Processing
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
4
(
1
), p.
012019
.
23.
Schmidt
,
H.
,
Hattel
,
J.
, and
Wert
,
J.
,
2004
, “
An Analytical Model for the Heat Generation in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
1
), pp.
143
157
.
24.
Cui
,
S.
,
Chen
,
Z. W.
, and
Robson
,
J. D.
,
2010
, “
A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds During Friction Stir Welding/Processing
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1023
1030
.
25.
Pew
,
J. W.
,
Nelson
,
T. W.
, and
Sorensen
,
C. D.
,
2007
, “
Torque Based Weld Power Model for Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
341
347
.
26.
Leitão
,
C.
,
Louro
,
R.
, and
Rodrigues
,
D. M.
,
2012
, “
Using Torque Sensitivity Analysis in Accessing Friction Stir Welding/Processing conditions
,”
J. Mater. Process. Technol.
,
212
(
10
), pp.
2051
2057
.
27.
Arora
,
A.
,
Nandan
,
R.
,
Reynolds
,
A.
, and
DebRoy
,
P.
,
2009
, “
Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments
,”
Scr. Mater.
,
60
(
1
), pp.
13
16
.
28.
Mehta
,
M.
,
Chatterjee
,
K.
, and
De
,
A.
,
2013
, “
Monitoring Torque and Traverse Force in Friction Stir Welding From Input Electrical Signatures of Driving Motors
,”
Sci. Technol. Weld. Joining
,
18
(
3
), pp.
191
197
.
29.
Orlande
,
H. R. B.
,
2010
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031001
.
30.
Woodbury
,
K. A.
,
Beck
,
J. V.
, and
Najafi
,
H.
,
2014
, “
Filter Solution of Inverse Heat Conduction Problem Using Measured Temperature History as Remote Boundary Condition
,”
Int. J. Heat Mass Transfer
,
72
, pp.
139
147
.
31.
Barrios
,
A. N. S.
,
Silva
,
J. B. C.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
,
Braghini
,
A.
, Jr.
, and
Matsumoto
,
H.
,
2014
, “
Modeling Heat Transfer in Die Milling
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
108
116
.
32.
Naveira-Cotta
,
C. P.
,
Cotta
,
R. M.
,
Orlande
,
H. R. B.
, and
Kakaç
,
S.
,
2010
, “
Direct and Inverse Problems Solutions in Micro-Scale Forced Convection
,”
Microfluidics Based Microsystems
(NATO Science for Peace and Security Series A: Chemistry and Biology),
Springer
,
Dordrecht, The Netherlands
, pp.
39
59
.
33.
Dou
,
R.
,
Wen
,
Z.
,
Zhou
,
G.
,
Liu
,
X.
, and
Feng
,
X.
,
2014
, “
Experimental Study on Heat-Transfer Characteristics of Circular Water Jet Impinging on High-Temperature Stainless Steel Plate
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
738
746
.
34.
Mejias
,
M. M.
,
Orlande
,
H. R. B.
, and
Ozisik
,
M. N.
,
1999
, “
A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids
,”
3rd International Conference on Inverse Problems in Engineering
, Port Ludlow, WA, June 13–18.
35.
Hsu
,
P. T.
,
Yang
,
Y. T.
, and
Chen
,
C. K.
,
1998
, “
A Three-Dimensional Inverse Problem of Estimating the Surface Thermal Behavior of the Working Roll in Rolling Process
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
76
82
.
36.
Pereyra
,
S.
,
Lombera
,
G. A.
, and
Urquiza
,
S. A.
,
2014
, “
Modelado Numérico del proceso de Soldadura FSW Incorporando una técnica de estimación de parámetros
,”
Rev. Int. Métodos Numéricos Cálculo Diseño Ing.
,
30
(
3
), pp.
173
177
.
37.
Lambrakos
,
S. G.
,
Fonda
,
R. W.
,
Milewski
,
J. O.
, and
Mitchell
,
J. E.
,
2003
, “
Analysis of Friction Stir Welds Using Thermocouple Measurements
,”
Sci. Technol. Weld. Joining
,
8
(
5
), pp.
385
390
.
38.
Mejias
,
M. M.
,
Orlande
,
H. R. B.
, and
Ozisik
,
M. N.
,
2003
, “
Effects of the Heating Process and Body Dimensions on the Estimation of the Thermal Conductivity Components of Orthotropic Solids
,”
Inverse Probl. Eng.
,
11
(
1
), pp.
75
89
.
39.
Hussein
,
S. A.
,
Tahir
,
A. S. M.
, and
Izamshah
,
R.
,
2015
, “
Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4319
4328
.
40.
Peel
,
M. J.
,
Steuwer
,
A.
,
Withers
,
P. J.
,
Dickerson
,
T.
,
Shi
,
Q.
, and
Shercliff
,
H.
,
2006
, “
Dissimilar Friction Stir Welds in AA5083-AA6082—Part I: Process Parameter Effects on Thermal History and Weld Properties
,”
Metall. Mater. Trans. A
,
37
(
7
), pp.
2183
2193
.
You do not currently have access to this content.