Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian process (GP) regression, a nonparametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed by any part of the machine using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

References

References
1.
U.S. Energy Information Administration (EIA)
,
2014
, “
AEO2014 Early Release Overview
,” Report No. DOE/EIA-0383ER.
2.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,” 13th
CIRP
International Conference of Life Cycle Engineering, Lueven, Switzerland, May 31–June 2, pp. 623–638.https://stuff.mit.edu/afs/athena.mit.edu/course/2/2.813/OldFiles/www/readings/Gutowski-CIRP.pdf
3.
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2010
, “
Automated Energy Monitoring of Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
21
24
.
4.
Neugebauer
,
R.
,
Denkena
,
B.
, and
Wegener
,
K.
,
2007
, “
Mechatronics Systems for Machine Tools
,”
Ann. CIRP
,
56
(
2
), pp.
657
686
.
5.
Dietmair
,
A.
, and
Verl
,
A.
,
2009
, “
Energy Consumption Forecasting and Optimisation for Tool Machines
,”
Mod. Mach. Sci. J.
, pp.
62
67
.https://www.researchgate.net/profile/Alexander_Verl/publication/229019188_Energy_Consumption_Forecasting_and_Optimisation_for_Tool_Machines/links/00b4952a58d0031191041013.pdf
6.
Draganescu
,
F.
,
Gheorghe
,
M.
, and
Doicin
,
C. V.
,
2003
, “
Models of Machine Tool Efficiency and Specific Consumed Energy
,”
J. Mater. Process. Technol.
,
141
(
1
), pp.
9
15
.
7.
Diaz
,
N.
,
Helu
,
M.
,
Jarvis
,
A.
,
Tonissen
,
S.
,
Dornfeld
,
D.
, and
Schlosser
,
R.
,
2009
, “
Strategies for Minimum Energy Operation for Precision Machining
,”
MTTRF
2009 Annual Meeting
, Shanghai, China.https://escholarship.org/uc/item/794866g5
8.
Teti
,
R.
,
Jemielniak
,
K.
,
O'Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machine Operations
,”
CIRP Ann. Manuf. Technol.
,
59
(2), pp.
717
739
.
9.
MTConnect Institute
,
2014
, “
MTConnect v. 1.3.0
,” MTConnect Institute, McLean, VA, accessed Oct. 10, 2014, http://www.mtconnect.org/downloads/standard.aspx
10.
Vijayaraghavan
,
A.
,
Sobel
,
W.
,
Fox
,
A.
,
Dornfeld
,
D.
, and
Warndorf
,
P.
,
2008
, “
Improving Machine Tool Interoperability Using Standard Interface Protocols: MTConnect
,”
International Symposium on Flexible Automation
, Atlanta, GA, June 23–26.http://escholarship.org/uc/item/4zs976kx
11.
Diaz
,
N.
,
Redelsheimer
,
E.
, and
Dornfeld
,
D.
,
2011
, “
Energy Consumption Characterization and Reduction Strategies for Milling Machine To Use
,” 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany, pp. 263–267.
12.
Bhinge
,
R.
,
Park
,
J.
,
Biswas
,
N.
,
Helu
,
M.
,
Dornfeld
,
D.
,
Law
,
K.
, and
Rachuri
,
S.
,
2014
, “
An Intelligent Machine Monitoring System Using Gaussian Process Regression for Energy Prediction
,”
IEEE International Conference on Big Data (IEEE BigData 2014)
, Washington, DC.
13.
Helu
,
M.
,
Robinson
,
S.
,
Bhinge
,
R.
,
Bänziger
,
T.
, and
Dornfeld
,
D.
,
2014
, “
Development of a Machine Tool Platform to Support Data Mining and Statistical Modeling of Machining Processes
,”
MTTRF 2014 Annual Meeting
, San Francisco, CA.
14.
Park
,
J.
,
Bhinge
,
R.
,
Biswas
,
N.
,
Srinivasan
,
M.
,
Helu
,
M.
,
Rachuri
,
S.
,
Dornfeld
,
D.
, and
Law
,
K.
,
2015
, “
A Generalized Data-Driven Energy Prediction Model With Uncertainty for a Milling Machine Tool Using Gaussian Process
,”
ASME
Paper No. MSEC2015-9354.
15.
Box
,
G.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
1979
,
Statistics for Experimenters: Design, Inovation, and Discovery
,
Wiley
, New York.
16.
Nguyen-Tuong
,
D.
,
Seeger
,
M.
, and
Peters
,
J.
,
2009
, “
Model Learning With Local Gaussian Process Regression
,”
Adv. Rob.
,
23
(
15
), pp.
2015
2034
.
17.
Wang
,
J. M.
,
Fleet
,
D. J.
, and
Hertzmann
,
A.
,
2008
, “
Gaussian Process Dynamical Models for Human Motion
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
30
(
2
), pp.
283
298
.
18.
Kim
,
K.
,
Lee
,
D.
, and
Essa
,
I.
,
2011
, “
Gaussian Process Regression Flow for Analysis of Motion Trajectories
,”
IEEE ICCV
, Nov. 6–13, pp. 1164–1171.
19.
Rasmussen
,
C.
, and
Williams
,
C.
,
2006
,
Gaussian Process for Machine Learning
,
MIT Press
, Boston, MA.
20.
Neal
,
R. M.
,
1996
,
Bayesian Learning for Neural Networks
,
Springer-Verlag
,
New York
.
21.
Rasmussen
,
E.
, and
Nickisch
,
H.
,
2013
, “
Gaussian Process Regression and Classification Toolbox Version 3.2
,” accessed Oct. 5, 2014, http://www.gaussianprocess.org/gpml/code/matlab/doc/
22.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
,
Springer
,
New York
.
23.
Willmott
,
C.
, and
Matsuura
,
K.
,
2005
, “
Advantage of the Mean Absolute Error Over the Root Mean Square Error (RMSE) in Assessing Average Model Performance
,”
Clim. Res.
,
30
(1), pp.
79
82
.
24.
Gustafson
,
W. I.
, and
Shaocai
,
Y.
,
2012
, “
Generalized Approach for Using Unbiased Symmetric Metrics With Negative Values: Normalized Mean Bias Factor and Normalized Mean Absolute Error Factor
,”
Atmos. Sci. Lett.
,
13
(
4
), pp.
262
267
.
You do not currently have access to this content.