Little work has been done on quantifying the environmental impacts and costs of sheet metal stamping. In this work, we present models that can be used to predict the energy requirements, global warming potential, human health impacts, and costs of making drawn parts using zinc (kirksite) die-sets and hydraulic or mechanical presses. The methodology presented can also be used to produce models of stamping using other die materials, such as iron, for which casting data already exists. An unprecedented study on the environmental impacts and costs of zinc die-set production was conducted at a leading Michigan die-maker. This analysis was used in conjunction with electrical energy measurements on forming presses to complete cradle-to-gate impact and cost analyses on producing small batch size hood and tailgate parts. These case studies were used to inform a generalized model that allows engineers to predict the impacts and costs of forming based on as little information as the final part material, surface area, thickness, and batch size (number of units produced). The case studies show that the press electricity is an insignificant contributor to the overall impacts and costs. The generalized models highlight that while costs for small batch production are dominated by the die-set, the environmental impacts are often dominated by the sheet metal. These findings explain the motivation behind the research into die-less forming processes such as incremental sheet forming, and emphasize the need to minimize the sheet metal scrap generation in order to reduce environmental impacts.

References

References
1.
Lovell
,
M.
,
Higgs
,
C. F.
,
Deshmukh
,
P.
, and
Mobley
,
A.
,
2006
, “
Increasing Formability in Sheet Metal Stamping Operations Using Environmentally Friendly lubricants
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
87
90
.
2.
Allwood
,
J.
,
Cullen
,
J.
,
Carruth
,
M.
,
Cooper
,
D.
,
McBrien
,
M.
,
Milford
,
R.
, and
Patel
,
A.
,
2012
,
Sustainable Materials With Both Eyes Open
,
UIT
,
Cambridge
.
3.
Zhao
,
K.
,
Liu
,
Z.
,
Yu
,
S.
,
Li
,
X.
,
Huang
,
H.
, and
Li
,
B.
,
2015
, “
Analytical Energy Dissipation in Large and Medium-Sized Hydraulic Press
,”
J. Cleaner Prod.
,
103
, pp.
908
915
.
4.
Peltier
,
D. J.
, and
Johannisson
,
T. G.
,
1998
, “
Flexforming of Prototype and Low-Volume Parts
,”
SAE
Technical, Paper No. 982398, p.
334
.
5.
Matwick
,
S.
,
2002
, “
An Economic Evaluation of Sheet Hydroforming and Low Volume Stamping and the Effects of Manufacturing Systems Analysis
,”
Masters thesis
, Massachusetts Institute of Technology, Cambridge, MA.
6.
Luckey
,
S. G.
,
Subramanian
,
S.
,
Young
,
C.
, and
Friedman
,
P.
,
2007
, “
Technical and Cost Study of Superplastic Forming of a Lightweight Aluminum Door Structure
,”
J. Mater. Eng. Perform.
,
16
(
3
), pp.
266
273
.
7.
Lamminen
,
L.
,
Wadman
,
B.
,
Kutter
,
R.
, and
Svinning
,
T.
,
2004
, “
ProSheet: Prototyping and Low Volume Production of Sheet Metal Components
,” Nordic Industrial Fund, Project No. 03028.
8.
Petek
,
A.
,
Gantar
,
G.
,
Pepelnjak
,
T.
, and
Kuzman
,
K.
,
2007
, “
Economical and Ecological Aspects of Single Point Incremental Forming Versus Deep Drawing Technology
,”
Key Eng. Mater.
,
344
, pp.
931
938
.
9.
Tuomi
,
J.
, and
Vihtonen
,
L.
,
2007
, “
Incremental Sheet Forming (ISF) as Small Batch Production Method
,”
Virtual and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping
,
CRC Press
,
Boca Raton, FL
, pp.
611
617
.
10.
Ingarao
,
G.
,
Ambrogio
,
G.
,
Gagliardi
,
F.
, and
Di Lorenzo
,
R.
,
2012
, “
A Sustainability Point of View on Sheet Metal Forming Operations: Material Wasting and Energy Consumption in Incremental Forming and Stamping Processes
,”
J. Cleaner Prod.
,
29–30
, pp.
255
268
.
11.
Dittrich
,
M. A.
,
Gutowski
,
T. G.
,
Cao
,
J.
,
Roth
,
J. T.
,
Xia
,
Z. C.
,
Kiridena
,
V.
, and
Henning
,
H.
,
2012
, “
Exergy Analysis of Incremental Sheet Forming
,”
Prod. Eng.
,
6
(
2
), pp.
169
177
.
12.
Schuler GmbH
,
1998
,
Metal Forming Handbook
,
Springer-Verlag
,
New York
.
13.
Brown
,
H.
,
Hamel
,
B.
, and
Hedman
,
B.
,
1985
, Energy Analysis of 108 Industrial Processes, Fairmont Press, Lilburn, GA.
14.
Burnham
,
A.
,
Wang
,
M.
, and
Wu
,
Y.
,
2006
, “
Development and Applications of GREET 2.7—The Transportation Vehicle-Cycle Model
,” Technical Report, Energy Systems Division, Argonne National Laboratory, Argonne, SD,
Report No. ANL/ESD/06-5
.
15.
Milford
,
R. L.
,
Allwood
,
J. M.
, and
Cullen
,
J. M.
,
2011
, “
Assessing the Potential of Yield Improvements, Through Process Scrap Reduction, for Energy and CO2 Abatement in the Steel and Aluminium Sectors
,”
Resour., Conserv. Recycl.
,
55
(
12
), pp.
1185
1195
.
16.
Sullivan
,
J.
,
Burnham
,
A.
, and
Wang
,
M.
,
2010
, “
Energy-Consumption and Carbon-Emission Analysis of Vehicle and Component Manufacturing
,” Technical Report, Argonne National Laboratory, Argonne, SD,
Report No. ANL/ESD/10-6
.
17.
Ecoinvent
,
2016
Life Cycle Inventory Database Made by the Centre for Life Cycle Inventories
,” Ecoinvent, Switzerland, accessed: Mar. 1,
2016
, http://www.ecoinvent.org
18.
Tang
,
D.
,
Eversheim
,
W.
, and
Schuh
,
G.
,
2004
, “
Qualitative and Quantitative Cost Analysis for Sheet Metal Stamping
,”
Int. J. Comput. Integr. Manuf.
,
17
(
5
), pp.
394
412
.
19.
Ficko
,
M.
,
Drstvenšek
,
I.
,
Brezočnik
,
M.
,
Balič
,
J.
, and
Vaupotic
,
B.
,
2005
, “
Prediction of Total Manufacturing Costs for Stamping Tool on the Basis of CAD-Model of Finished Product
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1327
1335
.
20.
Poli
,
C.
,
2001
,
Design for Manufacturing: A Structured Approach
,
Butterworth-Heinemann
,
Woburn, MA
.
21.
Rossie
,
K.
,
2015
, “
An Energy and Environmental Analysis of Aerospace Sheet Metal Part Manufacturing
,”
Masters thesis
, Massachusetts Institute of Technology, Cambridge, MA.
22.
Dalquist
,
S.
, and
Gutowski
,
T.
,
2004
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting
,”
ASME
Paper No. IMECE2004-62142.
23.
SimaPro
,
2016
, “
Life Cycle Assessment Software Package Made by PRé Consultants
,” SimaPro, New York, accessed: Mar. 1,
2016
, https://simapro.com
24.
Ashby
,
M.
,
2012
,
Materials and the Environment. Eco-Informed Material Choice
,
2nd ed.
,
Elsevier
,
Oxford, UK
.
25.
DOE
,
2002
, “
Energy and Environmental Profile of the U.S. Mining Industry
,” BCS Incorporated, Columbia, MD.
26.
Omar
,
M.
,
2011
,
The Automotive Body Manufacturing Systems and Processes
,
Wiley
,
New York
, Chap. 2.7.
27.
Dittrich
,
M.
,
2011
, “
Environmental Analysis of Asymmetric Incremental Sheet Forming
,” Master thesis, Massachusetts Institute of Technology, Cambridge, MA.
28.
U.S. Energy Information Administration
,
2014
, “
Electric Power Monthly
,” Table 5.6.A, U.S. Energy Information Administration, Washington, DC, accessed: Jan. 5, 2016, http://www.eia.gov/
29.
Hammond
,
G. P.
, and
Jones
,
C. I.
,
2011
, “
Inventory of Carbon and Energy (ICE), Version 2.0
,” BSRIA, Bracknell, Berkshire, UK.
30.
MFM
,
2010
, “
Hydraulic Presses Turn Green With Variable-Frequency Drives
,” Metal Forming Magazine, p. 1.
31.
Osakada
,
K.
,
Mori
,
K.
,
Altan
,
T.
, and
Groche
,
P.
,
2011
, “
Mechanical Servo Press Technology for Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
651
672
.
32.
Allwood
,
J.
,
Cullen
,
J.
,
Cooper
,
D.
,
Milford
,
R.
,
Patel
,
A.
,
Carruth
,
M.
, and
McBrien
,
M.
,
2010
, “
Conserving Our Metal Energy
,” University of Cambridge, Cambridge, accessed Jan. 5, 2016, http://www.lcmp.eng.cam.ac.uk
You do not currently have access to this content.