The robotic riveting system requires a rivet robotic positioning process for rivet-in-hole insertions, which can be divided into two stages: rivet path-following and rivet spot-positioning. For the first stage, varying parameter-linear sliding surfaces are proposed to achieve robust rivet path-following against robot errors and external disturbances of the robotic riveting system. For the second stage, a second-order sliding surface is applied to attain accurate rivet spot-positioning within a finite time required by the riveting process. In order to improve the dynamic performance of the robot riveting system, the motion of robot end-effector between the two adjacent riveting spots has been properly designed. Overall, the proposed control scheme can guarantee not only the stability of the robot control system but also the robust rivet path-following and quick rivet spot-positioning in the presence of the robot errors and external disturbances of the robotic riveting system. The simulation and experimental results demonstrate the effectiveness of the proposed control scheme.

References

References
1.
Campbell
,
F. C.
,
2006
,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
New York
, pp.
495
537
.
2.
Monsarrat
,
B.
,
Lavoie
,
E.
,
Cote
,
G.
,
De Montigny
,
M.
,
Corbeil
,
C.
,
Grenier
,
D.
, and
Tu
,
X.
,
2007
, “
High Performance Robotized Assembly System for Challenger 300 Business Jet Nose Fuse Panels
,”
SAE AeroTech Congress and Exhibition, Los Angeles, CA
, Sept. 12–17.
3.
Fei
,
Y. Q.
, and
Zhao
,
X. F.
,
2003
, “
An Assembly Process Modeling and Analysis for Robotic Multiple Peg-in-Hole
,”
Int. J. Intell. Rob. Syst.
,
36
(
2
), pp.
175
189
.
4.
Arai
,
T.
, Minami, M., Endo, W., Osumi, H., Fukuoka, T., and Moriyama, K.,
1997
, “
Hole Search Planning for Peg-in-Hole Problem
,”
Manuf. Syst.
,
26
(
2
), pp.
119
124
.
5.
Caine
,
M. E.
,
Lozana-Perez
,
T.
, and
Seering
,
W. P.
,
1989
, “
Assembly Strategies for Chamferless Partes
,”
IEEE International Conference on Robotics and Automation
, pp.
472
477
.
6.
Sathirakul
,
K.
, and
Sturges
,
R. H.
,
1998
, “
Jamming Conditions for Multiple Peg-in-Hole Assemblies
,”
Robotica
,
16
(
3
), pp.
329
345
.
7.
Sturges
,
R. H.
, and
Laowattana
,
S.
,
1996
, “
Virtual Wedging in Three-Dimensioal Peg Insertion Tasks
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
99
105
.
8.
Strip
,
D. R.
,
1998
, “
A Passive Mechanism for Insertion for Convex Peg Insertion Tasks
,” Sandia National Laboratories, Livermore, CA.
9.
Strip
,
D. R.
,
1988
, “
Insertion Using Geometric Analysis and Hybrid Force-Position Control: Method and Analysis
,”
IEEE
International Conference on Robotics and Automation, pp.
1744
1751
.
10.
Whitney
,
D. E.
,
1982
, “
Quasi-Static Assembly of Compliantly Supported Rigid Parts
,”
ASME J. Dyn. Syst. Control
,
104
(
1
), pp.
65
77
.
11.
Abdelal
,
G. F.
, Georgiou, G., Cooper, J., Robotham, A., Levers, A., and Lunt, P.,
2015
, “
Numerical and Experimental Investigation of Aircraft Panel Deformations During Riveting Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011009
.
12.
Janabi-Sharifi
,
F.
,
Deng
,
L. F.
, and
Wilson
,
W. J.
,
2011
, “
Comparison of Basic Visual Servoing Methods
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
967
983
.
13.
Weiss
,
L. E.
,
Sanderson
,
A. C.
, and
Neuman
,
C. P.
,
1987
, “
Dynamic Sensor Based Control of Robots With Visual Feedback
,”
IEEE J. Rob. Autom.
,
3
(
5
), pp.
404
417
.
14.
Wilson
,
W. J.
,
Hulls
,
C. C. W.
, and
Bell
,
G. S.
,
1996
, “
Relative End-Effector Control Using Cartesian Position-Based Visual Servoing
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
684
696
.
15.
Espiau
,
B.
,
Chaumette
,
F.
, and
Rives
,
P.
,
1992
, “
A New Approach to Visual Servoing in Robotics
,”
IEEE Trans. Rob. Autom.
,
8
(
3
), pp.
313
326
.
16.
Chaumettee
,
F
.,
1998
, “
Potential Problems of Stability and Convergence in Image-Based and Position-Based Visual Servoing
,”
The Confluence of Measurement and Control
(LNCIC Series), Vol.
237
,
Springer
,
London
.
17.
Kermorgant
,
O.
, and
Chaumette
,
F.
,
2011
, “
Combining IBVS and PBVS to Ensure the Visibility Constraint
,”
IEEE/RSJ
Int. Conf. Intell. Rob. Syst., pp.
2849
2854
, Sept. 25–30.
18.
Wilson
,
W. J.
,
1996
, “
Relative End Effector Control Using Cartesian Position Based Visual Servoing
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
684
689
.
19.
Janabi-Sharifi
,
F.
, and
Marey
,
M.
,
2010
, “
A Kalman Filter-Based Method for Pose Estimation in Visual Servoing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
939
947
.
20.
Taghirad
,
H. D.
,
Atashzar
,
S. F.
, and
Shahbazi
,
M.
,
2012
, “
A Robust Solution to Three-Dimensional Pose Estimation Using Composite Extended Kalman Observer and Kalman Filter
,”
IET Comput. Meas.
,
6
(2), pp.
140
152
.
21.
Salehian
,
M.
,
RayatDoost
,
S.
, and
Taghirad
,
H. D.
,
2011
, “
Robust Unscented Kalman Filter for Visual Servoing System
,” International Conference on Control, Instrumentation, and Automation (
lCCIA
), Shiraz, Iran, Dec. 27–29.
22.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J. P.
,
2014
, “
Comprehensive Online Control Strategies for Plastic Injection Molding Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041009
.
23.
Parsapour
,
M.
,
Sayatdoost
,
S.
, and
Taghirad
,
H. D.
,
2013
, “
Position Based Sliding Mode Control for Visual Servoing System
,”
RSI/ISM
International Conference on Robotics and Mechatronics, Feb. 13–15, Vol.
1
, pp.
337
342
.
24.
Kim
,
J. K.
,
Kim
,
D. W.
,
Choi
,
S. J.
, and
Won
,
S. C.
,
2006
, “
Image-Based Visual Servoing Using Sliding Mode Control
,”
SICE-ICASE
International Conference, Oct. 18–21, pp.
4996
5001
.
25.
Stepanenko
,
Y.
,
Cao
,
Y.
, and
Su
,
C. Y.
,
1998
, “
Variable Structure Control of Robotics Manipulator With PID Sliding Mode Surfaces
,”
Int. J. Robust Nonlinear Control
,
8
(
1
), pp.
79
90
.
26.
Xi
,
F. F.
,
Lin
,
Y.
, and
X.-W.
Tu
,
2013
, “
Framework on Robotic Percussive Riveting for Aircraft Assembly Automation
,”
Adv. Manuf.
,
1
(
2
), pp.
112
122
.
27.
Shtessel
,
Y.
, Edwards, C.,, Fredman, G., and Levant, A.,
2013
,
Sliding Mode Control and Observation: Intuitive Theory of Sliding Mode Control
,
Springer Science Media
,
New York
.
You do not currently have access to this content.