Laser drilling of alumina is a noncontact material processing method, which has great advantages over the traditional mechanical machining. However, the quality of laser drilling is still a challenge. In this study, a 2D transient model is developed to simulate the underwater laser drilling of alumina, considering the recoil pressure which is generated by adjusting the density of water. The distributions of the temperature, pressure, and velocity during the drilling process are examined. The numerical results show that the underwater-drilled hole with smaller taper is obtained compared with that in air, which is attributed to the recoil pressure, higher specific heat capacity, and heat transfer coefficient of water. The experimental results validate the phenomenon in numerical simulation.

References

References
1.
Vora
,
H. D.
,
Santhanakrishnan
,
S.
,
Harimkar
,
S. P.
,
Boetcher
,
S. K. S.
, and
Dahotre
,
N. B.
,
2012
, “
Evolution of Surface Topography in One-Dimensional Laser Machining of Structural Alumina
,”
J. Eur. Ceram. Soc.
,
32
(
16
), pp.
4205
4218
.
2.
Adelmann
,
B.
, and
Hellmann
,
R.
,
2015
, “
Rapid Micro Hole Laser Drilling in Ceramic Substrates Using Single Mode Fiber Laser
,”
J. Mater. Process. Technol.
,
221
(
1
), pp.
80
86
.
3.
Vikulin
,
V. V.
,
Kelina
,
I. Y.
,
Shatalin
,
A. S.
, and
Rusanova
,
L. N.
,
2004
, “
Advanced Ceramic Structural Materials
,”
Refract. Ind. Ceram.
,
45
(
6
), pp.
383
386
.
4.
Perriea
,
W.
,
Rushtona
,
A.
,
Gilla
,
M.
,
Foxa
,
P.
, and
O'Neillb
,
W.
,
2005
, “
Femtosecond Laser Micro-Structuring of Alumina Ceramic
,”
Appl. Surf. Sci.
,
248
(
1–4
), pp.
213
217
.
5.
Triantafyllidis
,
D.
,
Li
,
L.
, and
Stott
,
F. H.
,
2002
, “
Surface Treatment of Alumina-Based Ceramics Using Combined Laser Sources
,”
Appl. Surf. Sci.
,
186
(
1–4
), pp.
140
144
.
6.
Hanona
,
M. M.
,
Akmanb
,
E.
,
Genc Oztoprakb
,
B.
,
Gunesc
,
M.
,
Tahaa
,
Z. A.
,
Hajima
,
K. I.
,
Kacarb
,
E.
,
Gundogduc
,
O.
, and
Demir
,
A.
,
2012
, “
Experimental and Theoretical Investigation of the Drilling of Alumina Ceramic Using Nd:YAG Pulsed Laser
,”
Opt. Laser Technol.
,
44
(
4
), pp.
913
922
.
7.
Vora
,
H. D.
, and
Dahotre
,
N. B.
,
2013
, “
Laser Machining of Structural Ceramics
,”
Am. Ceram. Soc. Bull.
,
92
(
5
), pp.
29
30
.
8.
Dubey
,
A. K.
, and
Yadava
,
V.
,
2008
, “
Experimental Study of Nd:YAG Laser Beam Machining—An Overview
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
15
26
.
9.
Bharatish
,
A.
,
Narasimha Murthy
,
H. N.
,
Anand
,
B.
,
Madhusoodana
,
C. D.
,
Praveena
,
G. S.
, and
Krishna
,
M.
,
2013
, “
Characterization of Hole Circularity and Heat Affected Zone in Pulsed CO2, Laser Drilling of Alumina Ceramics
,”
Opt. Laser Technol.
,
53
(
53
), pp.
22
32
.
10.
Kacar
,
E.
,
Mutlu
,
M.
,
Akman
,
E.
,
Demir
,
A.
,
Candan
,
L.
,
Canel
,
T.
,
Gunay
,
V.
, and
Sinmazcelik
,
T.
,
2009
, “
Characterization of the Drilling Alumina Ceramic Using Nd:YAG Pulsed Laser
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2008
2014
.
11.
Geiger
,
M.
,
Leitz
,
K. H.
,
Koch
,
H.
, and
Otto
,
A.
,
2009
, “
A 3D Transient Model of Keyhole and Melt Pool Dynamics in Laser Beam Welding Applied to the Joining of Zinc Coated Sheets
,”
Prod. Eng.
,
3
(
2
), pp.
127
136
.
12.
Ganesh
,
R. K.
,
Faghri
,
A.
, and
Hahn
,
Y.
,
1997
, “
A Generalized Thermal Modeling for Laser Drilling Process—II: Numerical Simulation and Results
,”
Int. J. Heat Mass Transfer
,
40
(
96
), pp.
3361
3373
.
13.
Zhang
,
Y.
,
Shen
,
Z.
, and
Ni
,
X.
,
2014
, “
Modeling and Simulation on Long Pulse Laser Drilling Processing
,”
Int. J. Heat Mass Transfer
,
73
(
4
), pp.
429
437
.
14.
Tsai
,
C. H.
, and
Li
,
C. C.
,
2009
, “
Investigation of Underwater Laser Drilling for Brittle Substrates
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2838
2846
.
15.
Iwatani
,
N.
,
Doan
,
H. D.
, and
Fushinobu
,
K.
,
2014
, “
Optimization of Near-Infrared Laser Drilling of Silicon Carbide Under Water
,”
Int. J. Heat Mass Transfer
,
71
, pp.
515
520
.
16.
Michael
,
F. M.
,
2006
, “
Effects of Multiple Reflections on Hole Formation During Short-Pulsed Laser Drilling
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
653
661
.
17.
Modest
,
M. F.
, and
Abakians
,
H.
,
1986
, “
Evaporative Cutting of a Semi-infinite Body With a Moving CW Laser
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
602
607
.
18.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I: Model Formulation
,”
Int. J. Heat Mass Transfer
,
30
(
10
), pp.
2161
2170
.
19.
Petring
,
A. D.
,
Abels
,
P.
, and
Beyer
,
E.
,
1989
, “
Absorption Distribution On Idealized Cutting Front Geometries and Its Significance for Laser Beam Cutting [C]
,”
Proc. SPIE
,
1020
, pp.
123
131
.
20.
Ahmadi
,
B.
,
Torkamany
,
M. J.
,
Jaleh
,
B.
, and
Sabaghzadeh
,
J.
,
2009
, “
Theoretical Comparison of Oxygen Assisted Cutting by CO2 and Yb:YAG Fiber Lasers
,”
Chin. J. Phys.
,
47
(
4
), pp.
465
475
.
21.
Zaitsev
,
A. V.
,
Kovalev
,
O. B.
,
Orishich
,
A. M.
, and
Fomin
,
V. M.
,
2007
, “
Numerical Analysis of the Effect of the TEM00 Radiation Mode Polarisation on the Cut Shape in Laser Cutting of Thick Metal Sheets
,”
Quantum Electron.
,
35
(
2
), pp.
200
204
.
22.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
23.
Fluent
,
2006
, “
FLUENT 6.3
,” User's
Guide, Fluent, Inc
,
Lebanon, NH
.
You do not currently have access to this content.