Graphene nanoplatelets (GNPs) have many outstanding properties, such as high mechanical strengths, light weight, and high electric conductivity. These unique properties make it an ideal reinforcement used for metal matrix composites (MMCs). In the past few years, many studies have been performed to incorporate GNPs into metal matrix and investigate the properties of obtained metal matrix composites. Meanwhile, fabrication of MMCs through laser-assisted additive manufacturing (LAAM) has attracted much attention in recent years due to the advantages of low waste, high precision, short production lead time, and high workpiece complexity capability. In this study, the two attractive features are combined to produce GNPs reinforced MMC using selective laser melting (SLM) process, one of the LAAM processes. The target metal matrix material is Inconel 718, a nickel-based Ni–Cr–Fe austenitic superalloy that possesses excellent workability and mechanical performance, and has wide applications in industries. In the experiment, pure Inconel 718 and GNPs reinforced Inconel 718 composites with two levels of GNPs content (i.e., 0.25 and 1 wt. %) are obtained by SLM. Note that before the SLM process, a novel powder mixture procedure is employed to ensure the even dispersion of GNPs in the Inconel 718 powders. Room temperature tensile tests are conducted to evaluate the tensile properties. Scanning electron microscopy (SEM) observations are conducted to analyze the fracture surface of materials and to understand the reinforcing mechanism. It is found that fabrication of GNPs reinforced MMC using SLM is a viable approach. The obtained composite possesses dense microstructure and significantly enhanced tensile strength. The ultimate tensile strengths (UTSs) are 997.8, 1296.3, and 1511.6 MPa, and the Young's moduli are 475, 536, and 675 GPa, for 0 wt. % (pure Inconel 718), 0.25 wt. %, and 1 wt. % GNP additions, respectively. The bonding between GNPs and matrix material appears to be strong, and GNPs could be retained during the SLM process. The strengthening effect and mechanisms involved in the composites are discussed. Load transfer, thermal expansion coefficient mismatch, and dislocation hindering are believed to be the three main reinforcing mechanisms involved. It should be noted that more work needs to be conducted in the future to obtain more comprehensive information regarding other static and dynamic properties and the high-temperature performances of the GNP-reinforced MMCs produced by SLM. Process parameter optimization should also be investigated.

References

References
1.
Jacobson
,
D. M.
, and
Bennett
,
G.
,
2006
, “
Practical Issues in the Application of Direct Metal Laser Sintering
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 14–16, pp.
728
739
.
2.
Mercelis
,
P.
, and
Kruth
,
J. P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
3.
Haga
,
S.
,
Harada
,
Y.
, and
Tsubakino
,
H.
,
2006
, “
Fatigue Life Prolongation of Carburized Steel by Means of Shot-Peening
,”
Materials Sci. Forum
,
505–507
, pp.
775
780
.
4.
Thomas
,
A.
,
El-Wahabi
,
M.
,
Cabrera
,
J. M.
, and
Prado
,
J. M.
,
2006
, “
High Temperature Deformation of Inconel 718
,”
J. Mater. Process. Technol.
,
177
(
1
), pp.
469
472
.
5.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1988
, “
Precipitation of the δ-Ni3Nb Phase in Two Nickel Base Superalloys
,”
Metall. Trans. A
,
19
(
3
), pp.
453
465
.
6.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1994
, “
Precipitation and Room Temperature Deformation Behaviour of Inconel 718
,”
Superalloys 718, 625, 706 and Various Derivatives
,
E. A.
Loria
, ed.,
The Minerals, Metals and Materials Society
,
Pittsburgh, PA
, pp.
419
440
.
7.
Paul
,
C. P.
,
Ganesh
,
P.
,
Mishra
,
S. K.
,
Bhargava
,
P.
,
Negi
,
J.
, and
Nath
,
A. K.
,
2007
, “
Investigating Laser Rapid Manufacturing for Inconel-625 Components
,”
Opt. Laser Technol.
,
39
(
4
), pp.
800
805
.
8.
Parimi
,
L. L.
,
Clark
,
D.
, and
Attallah
,
M. M.
,
2014
, “
Microstructural and Texture Development in Direct Laser Fabricated IN718
,”
Mater. Charact.
,
89
, pp.
102
111
.
9.
Cooper
,
D. E.
,
Blundell
,
N.
,
Maggs
,
S.
, and
Gibbons
,
G. J.
,
2013
, “
Additive Layer Manufacture of Inconel 625 Metal Matrix Composites, Reinforcement Material Evaluation
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2191
2200
.
10.
Hong
,
C.
,
Gu
,
D.
,
Dai
,
D.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
, and
Poprawe
,
R.
,
2013
, “
Laser Metal Deposition of TiC/Inconel 718 Composites With Tailored Interfacial Microstructures
,”
Opt. Laser Technol.
,
54
, pp.
98
109
.
11.
Gu
,
D.
,
Hong
,
C.
,
Jia
,
Q.
,
Dai
,
D.
,
Gasser
,
A.
,
Weisheit
,
A.
, and
Poprawe
,
R.
,
2014
, “
Combined Strengthening of Multi-Phase and Graded Interface in Laser Additive Manufactured TiC/Inconel 718 Composites
,”
J. Phys. D
,
47
(
4
), p.
045309
.
12.
Bi
,
G.
,
Sun
,
C. N.
,
Nai
,
M. L.
, and
Wei
,
J.
,
2013
, “
Micro-Structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited Using LAAM
,”
Phys. Proc.
,
41
, pp.
828
834
.
13.
Jang
,
B.
, and
Zhamu
,
A.
,
2008
, “
Processing of Nanographene Platelets (NGPs) and NGP Nanocomposites: A Review
,”
J. Mater. Sci.
,
43
(
15
), pp.
5092
5101
.
14.
Wang
,
J.
,
Li
,
Z.
,
Fan
,
G.
,
Pan
,
H.
,
Chen
,
Z.
, and
Zhang
,
D.
,
2012
, “
Reinforcement With Graphene Nanosheets in Aluminum Matrix Composites
,”
Scr. Mater.
,
66
(
8
), pp.
594
597
.
15.
Chen
,
L. Y.
,
Konishi
,
H.
,
Fehrenbacher
,
A.
,
Ma
,
C.
,
Xu
,
J. Q.
,
Choi
,
H.
, and
Li
,
X. C.
,
2012
, “
Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites
,”
Scr. Mater.
,
67
(
1
), pp.
29
32
.
16.
Bastwros
,
M.
,
Kim
,
G. Y.
,
Zhu
,
C.
,
Zhang
,
K.
,
Wang
,
S.
,
Tang
,
X.
, and
Wang
,
X.
,
2014
, “
Effect of Ball Milling on Graphene Reinforced Al6061 Composite Fabricated by Semi-Solid Sintering
,”
Composites, Part B
,
60
, pp.
111
118
.
17.
Rashad
,
M.
,
Pan
,
F.
,
Asif
,
M.
, and
Tang
,
A.
,
2014
, “
Powder Metallurgy of Mg–1% Al–1% Sn Alloy Reinforced With Low Content of Graphene Nanoplatelets (GNPs)
,”
J. Ind. Eng. Chem.
,
20
(
6
), pp.
4250
4255
.
18.
Tang
,
Y.
,
Yang
,
X.
,
Wang
,
R.
, and
Li
,
M.
,
2014
, “
Enhancement of the Mechanical Properties of Graphene–Copper Composites With Graphene–Nickel Hybrids
,”
Mater. Sci. Eng. A
,
599
, pp.
247
254
.
19.
Peng
,
Y.
,
Hu
,
Y.
,
Han
,
L.
, and
Ren
,
C.
,
2014
, “
Ultrasound-Assisted Fabrication of Dispersed Two-Dimensional Copper/Reduced Graphene Oxide Nanosheets Nanocomposites
,”
Composites, Part B
,
58
, pp.
473
477
.
20.
Lin
,
D.
,
Liu
,
C. R.
, and
Cheng
,
G. J.
,
2014
, “
Single-Layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement
,”
Acta Mater.
,
80
, pp.
183
193
.
21.
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Biamino
,
S.
, and
Badini
,
C.
,
2013
, “
Direct Metal Laser Sintering: An Additive Manufacturing Technology Ready to Produce Lightweight Structural Parts for Robotic Applications
,”
Metall. Ital.
,
10
, pp.
15
24
.
22.
Yoon
,
D.
,
Son
,
Y. W.
, and
Cheong
,
H.
,
2011
, “
Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy
,”
Nano Lett.
,
11
(
8
), pp.
3227
3231
.
23.
Fattahi
,
M.
,
Gholami
,
A. R.
,
Eynalvandpour
,
A.
,
Ahmadi
,
E.
,
Fattahi
,
Y.
, and
Akhavan
,
S.
,
2014
, “
Improved Microstructure and Mechanical Properties in Gas Tungsten Arc Welded Aluminum Joints by Using Graphene Nanosheets/Aluminum Composite Filler Wires
,”
Micron
,
64
, pp.
20
27
.
24.
Rashad
,
M.
,
Pan
,
F.
,
Tang
,
A.
, and
Asif
,
M.
,
2014
, “
Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method
,”
Prog. Nat. Sci. Mater. Int.
,
24
(
2
), pp.
101
108
.
You do not currently have access to this content.