In this paper, we develop and apply feature extraction and selection techniques to classify tool wear in the gear shaving process. Because shaving tool condition monitoring is not well-studied, we extract both traditional and novel features from accelerometer signals collected from the shaving machine. We then apply a heuristic feature selection technique to identify key features and classify the tool condition. Run-to-life data from a shop-floor application is used to validate the proposed technique.

References

References
1.
U. S. C. T. Institute
,
1989
,
Metal Cutting Tool Handbook
,
7th ed.
,
Industrial Press
,
New York
.
2.
Klocke
,
F.
, and
Schroder
,
T.
, “
Gear Shaving: Simulation and Technological Studies
,”
ASME
Paper No. DETC2003/PTG-48033.
3.
Hung
,
C.
,
Liu
,
J.
,
Chang
,
S.
, and
Lin
,
H.
,
2007
, “
Simulation of Gear Shaving With Considerations of Cutter Assembly Errors and Machine Setting Parameters
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
400
407
.
4.
Lv
,
M.
, and
Yang
,
X.
,
2002
, “
Design and Manufacture of a Shaving Cutter With Unequal Depth Gashes
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
193
195
.
5.
Brzezinski
,
A. J.
,
Wang
,
Y.
,
Choi
,
D. K.
,
Qiao
,
X.
, and
Ni
,
J.
,
2008
, “
Feature-Based Tool Condition Monitoring in a Gear Shaving Application
,”
ASME
Paper No. MSEC_ICMP2008-72297.
6.
Elbestawi
,
M. A.
,
Papazafifiou
,
T. A.
, and
Du
,
R. X.
,
1991
, “
In-Process Monitoring of Tool Wear in Milling Using Cutting Force Signature
,”
Int. J. Mach. Tools Manuf.
,
31
(
1
), pp.
55
73
.
7.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.
8.
Wang
,
L.
, and
Gao
,
R. X.
,
2006
,
Condition Monitoring and Control for Intelligent Manufacturing
,
Springer
,
London
.
9.
Zakrajsek
,
J. J.
, and
Lewicki
,
D. G.
,
1998
, “
Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
,”
Tribo Test
,
4
(
4
), pp.
407
422
.
10.
Yu
,
D.
,
Yang
,
Y.
, and
Cheng
,
J.
,
2007
, “
Application of Time-Frequency Entropy Method Based on Hilbert-Huang Transform to Gear Fault Diagnosis
,”
Measurement
,
40
(
9–10
), pp.
823
830
.
11.
Wang
,
Y.
,
Li
,
L.
,
Ni
,
J.
, and
Huang
,
S.
,
2009
, “
Feature Selection Using Tabu Search With Long-Term Memories and Probabilistic Neural Networks
,”
Pattern Recognit. Lett.
,
30
(
7
), pp.
661
670
.
12.
Pudil
,
P.
,
Novovicova
,
J.
, and
Kittler
,
J.
,
1994
, “
Floating Search Methods in Feature Selection
,”
Pattern Recognit. Lett.
,
15
(
11
), pp.
1119
1125
.
13.
Siedlecki
,
W.
, and
Sklansky
,
J.
,
1989
, “
A Note on Genetic Algorithms for Large-Scale Feature Selection
,”
Pattern Recognit. Lett.
,
10
(
11
), pp.
335
347
.
14.
Rafiee
,
J.
,
Arvani
,
F.
,
Harifi
,
A.
, and
Sadeghi
,
M. H.
,
2007
, “
Intelligent Condition Monitoring of a Gearbox Using Artificial Neural Network
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1746
1754
.
15.
Du
,
R. X.
,
Elbestawi
,
M. A.
, and
Li
,
S.
,
1992
, “
Tool Condition Monitoring in Turning Using Fuzzy Set Theory
,”
Int. J. Mach. Tools Manuf.
,
32
(
6
), pp.
781
796
.
16.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
(
7–8
), pp.
1157
1182
.
17.
Bell
,
A.
, and
Sejnowski
,
T.
,
1997
, “
The ‘Independent Components' of Natural Scenes are Edge Filters
,”
Vision Res.
,
37
(
23
), pp.
3327
3338
.
18.
Specht
,
D. F.
,
1990
, “
Probabilistic Neural Networks
,”
Neural Networks
,
3
(
1
), pp.
109
118
.
You do not currently have access to this content.