The advancement in the application of light alloys such as magnesium and titanium is closely related to the state of the art of joining them. As a new type of solid-phase welding, ultrasonic spot welding is an effective way to achieve joints of high strength. In this paper, ultrasonic welding was carried out on magnesium–titanium dissimilar alloys to investigate the influences of welding parameters on joint strength. The analysis of variance was adopted to study the weight of each welding parameter and their interactions. The artificial neural network (ANN) was used to predict joint strength. Results show that in ultrasonic welding of magnesium and titanium alloys, clamping force is the most significant factor, followed by vibration time and vibration amplitude; the interactions between vibration time and vibration amplitude, and between vibration amplitude and clamping force also significantly impact the strength. By using the artificial neural network, test data were trained to obtain a high precision network, which was used to predict the variations of joint strength under different parameters. The analytical model predicts that with the increase in vibration time, the increase in optimal joint strength is limited, but the range of welding parameters to obtain a higher joint strength increases significantly; the minimum joint strength increases as well; and the optimal vibration amplitude expands gradually and reaches the maximum when the vibration time is 1000 ms, then shifts toward the low end gradually.

References

References
1.
Li
,
H.
,
Choi
,
H.
,
Ma
,
C.
,
Zhao
,
J.
,
Jiang
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Microsensors
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051015
.
2.
Ni
,
Z.
,
Zhao
,
H.
,
Mi
,
P.
, and
Ye
,
F.
,
2016
, “
Microstructure and Mechanical Performances of Ultrasonic Spot Welded Al/Cu Joints With Al 2219 Alloy Particle Interlayer
,”
Mater. Des.
,
92
, pp.
779
786
.
3.
Patel
,
V. K.
,
Bhole
,
S. D.
,
Chen
,
D. L.
,
Ni
,
D. R.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
,
2015
, “
Solid-State Ultrasonic Spot Welding of SiCp/2009Al Composite Sheets
,”
Mater. Des.
,
65
, pp.
489
495
.
4.
Haddadi
,
F.
, and
Abu-Farha
,
F.
,
2016
, “
The Effect of Interface Reaction on Vibration Evolution and Performance of Aluminium to Steel High Power Ultrasonic Spot Joints
,”
Mater. Des.
,
89
, pp.
50
57
.
5.
Chen
,
K.
, and
Zhang
,
Y.
,
2015
, “
Mechanical Analysis of Ultrasonic Welding Considering Knurl Pattern of Sonotrode Tip
,”
Mater. Des.
,
87
, pp.
393
404
.
6.
Xi
,
L.
,
Banu
,
M.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abell
,
J.
,
2016
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011008
.
7.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
J. S.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
8.
Lee
,
D.
,
Kannatey-Asibu
,
E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
9.
Xu
,
L.
,
Wang
,
L.
,
Chen
,
Y. C.
,
Robson
,
J. D.
, and
Prangnell
,
P. B.
,
2016
, “
Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds
,”
Metall. Mater. Trans. A
,
47
(
1
), pp.
334
346
.
10.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2014
, “
Fatigue Life Estimation of Ultrasonic Spot Welded Mg Alloy Joints
,”
Mater. Des.
,
62
, pp.
124
132
.
11.
Shakil
,
M.
,
Tariq
,
N. H.
,
Ahmad
,
M.
,
Choudhary
,
M. A.
,
Akhter
,
J. I.
, and
Babu
,
S. S.
,
2014
, “
Effect of Ultrasonic Welding Parameters on Microstructure and Mechanical Properties of Dissimilar Joints
,”
Mater. Des.
,
55
, pp.
263
273
.
12.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2014
, “
Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties
,”
Metall. Mater. Trans. A
,
45
(4), pp.
2055
2066
.
13.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
J. S.
,
Cai
,
W. W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.
14.
Santella
,
M.
,
Franklin
,
T. J.
,
Pan
,
J.
,
Pan
,
T.-Y.
, and
Brown
,
E.
,
2010
, “
Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel
,”
SAE Int. J. Mater. Manuf.
,
3
, pp.
652
657
.
15.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.-A.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051013
.
16.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.-A.
,
2014
, “
Vibrational Energy Loss Analysis in Battery Tab Ultrasonic Welding
,”
J. Manuf. Process.
,
16
(
2
), pp.
218
232
.
17.
Shawn Lee
,
S.
,
Shao
,
C.
,
Hyung Kim
,
T.
,
Jack Hu
,
S.
,
Kannatey-Asibu
,
E.
,
Cai
,
W. W.
,
Patrick Spicer
,
J.
, and
Abell
,
J. A.
,
2014
, “
Characterization of Ultrasonic Metal Welding by Correlating Online Sensor Signals With Weld Attributes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051019
.
18.
Wang
,
L.
,
Wang
,
Y.
,
Prangnell
,
P.
, and
Robson
,
J.
,
2015
, “
Modeling of Intermetallic Compounds Growth Between Dissimilar Metals
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
4106
4114
.
19.
Shin
,
H. S.
, and
De Leon
,
M.
,
2015
, “
Parametric Study in Similar Ultrasonic Spot Welding of A5052-H32 Alloy Sheets
,”
J. Mater. Process. Technol.
,
224
, pp.
222
232
.
20.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2013
, “
Ultrasonic Spot Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Lap Shear Strength
,”
Mater. Sci. Eng. A
,
569
, pp.
78
85
.
21.
Santella
,
M.
,
Brown
,
E.
,
Pozuelo
,
M.
,
Pan
,
T.-Y.
, and
Yang
,
J.-M.
,
2012
, “
Details of Mg–Zn Reactions in AZ31 to Galvanised Mild Steel Ultrasonic Spot Welds
,”
Sci. Technol. Weld. Joining
,
17
(
3
), pp.
219
224
.
22.
Wu
,
X.
,
Liu
,
T.
, and
Cai
,
W.
,
2015
, “
Microstructure, Welding Mechanism, and Failure of Al/Cu Ultrasonic Welds
,”
J. Manuf. Process.
,
20
, pp.
515
524
.
23.
Zhang
,
C. Q.
,
Robson
,
J. D.
,
Ciuca
,
O.
, and
Prangnell
,
P. B.
,
2014
, “
Microstructural Characterization and Mechanical Properties of High Power Ultrasonic Spot Welded Aluminum Alloy AA6111-TiAl6V4 Dissimilar Joints
,”
Mater. Charact.
,
97
, pp.
83
91
.
24.
Lai
,
W. J.
, and
Pan
,
J.
,
2014
, “
Stress Intensity Factor Solutions for Adhesive-Bonded Lap-Shear Specimens of Magnesium and Steel Sheets With and Without Kinked Cracks for Fatigue Life Estimations
,”
Eng. Fract. Mech.
,
131
, pp.
454
470
.
25.
Jedrasiak
,
P.
,
Shercliff
,
H. R.
,
Chen
,
Y. C.
,
Wang
,
L.
,
Prangnell
,
P.
, and
Robson
,
J.
,
2015
, “
Modeling of the Thermal Field in Dissimilar Alloy Ultrasonic Welding
,”
J. Mater. Eng. Perform.
,
24
(
2
), pp.
799
807
.
26.
Carboni
,
M.
, and
Annoni
,
M.
,
2011
, “
Ultrasonic Metal Welding of AA 6022–T4 Lap Joints—Part II: Fatigue Behaviour, Failure Analysis and Modelling
,”
Sci. Technol. Weld. Joining
,
16
(
2
), pp.
116
125
.
27.
Gao
,
M.
,
Wang
,
Z. M.
,
Yan
,
J.
, and
Zeng
,
X. Y.
,
2011
, “
Dissimilar Ti/Mg Alloy Butt Welding by Fibre Laser With Mg Filler Wire–Preliminary Study
,”
Sci. Technol. Weld. Joining
,
16
(
6
), pp.
488
496
.
28.
Aonuma
,
M.
, and
Nakata
,
K.
,
2010
, “
Effect of Calcium on Intermetallic Compound Layer at Interface of Calcium Added Magnesium-Aluminum Alloy and Titanium Joint by Friction Stir Welding
,”
Mater. Sci. Eng. B
,
173
(
1–3
), pp.
135
138
.
29.
Aonuma
,
M.
, and
Nakata
,
K.
,
2009
, “
Effect of Alloying Elements on Interface Microstructure of Mg-Al-Zn Magnesium Alloys and Titanium Joint by Friction Stir Welding
,”
Mater. Sci. Eng. B
,
161
(
1–3
), pp.
46
49
.
30.
Cao
,
R.
,
Wang
,
T.
,
Wang
,
C.
,
Feng
,
Z.
,
Lin
,
Q.
, and
Chen
,
J. H.
,
2014
, “
Cold Metal Transfer Welding–Brazing of Pure Titanium TA2 to Magnesium Alloy AZ31B
,”
J. Alloys Compd.
,
605
, pp.
12
20
.
31.
Gao
,
M.
,
Wang
,
Z. M.
,
Li
,
X. Y.
, and
Zeng
,
X. Y.
,
2012
, “
Laser Keyhole Welding of Dissimilar Ti-6Al-4V Titanium Alloy to AZ31B Magnesium Alloy
,”
Metall. Mater. Trans. A
,
43
(
1
), pp.
163
172
.
32.
Aonuma
,
M.
, and
Nakata
,
K.
,
2012
, “
Dissimilar Metal Joining of ZK60 Magnesium Alloy and Titanium by Friction Stir Welding
,”
Mater. Sci. Eng. B
,
177
(
7
), pp.
543
548
.
33.
Ren
,
D.
,
Zhao
,
K.
,
Pan
,
M.
,
Chang
,
Y.
,
Gang
,
S.
, and
Zhao
,
D.
,
2017
, “
Ultrasonic Spot Welding of Magnesium Alloy to Titanium Alloy
,”
Scr. Mater.
,
126
, pp.
58
62
.
34.
Hornik
,
K.
,
1991
, “
Approximation Capabilities of Multilayer Feedforward Networks
,”
Neural Networks
,
4
(
2
), pp.
251
257
.
35.
Martín
,
Ó.
,
De Tiedra
,
P.
,
López
,
M.
,
San-Juan
,
M.
,
García
,
C.
,
Martín
,
F.
, and
Blanco
,
Y.
,
2009
, “
Quality Prediction of Resistance Spot Welding Joints of 304 Austenitic Stainless Steel
,”
Mater. Des.
,
30
(
1
), pp.
68
77
.
36.
Norouzi
,
A.
,
Hamedi
,
M.
, and
Adineh
,
V. R.
,
2012
, “
Strength Modeling and Optimizing Ultrasonic Welded Parts of ABS-PMMA Using Artificial Intelligence Methods
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
135
147
.
37.
Sadeghi
,
B. H. M.
,
2000
, “
BP-Neural Network Predictor Model for Plastic Injection Molding Process
,”
J. Mater. Process. Technol.
,
103
(
3
), pp.
411
416
.
38.
Benyelloul
,
K.
, and
Aourag
,
H.
,
2013
, “
Bulk Modulus Prediction of Austenitic Stainless Steel Using a Hybrid GA-ANN as a Data Mining Tools
,”
Comput. Mater. Sci.
,
77
, pp.
330
334
.
39.
Huang
,
M.
,
Han
,
W.
,
Wan
,
J.
,
Ma
,
Y.
, and
Chen
,
X.
,
2016
, “
Multi-Objective Optimisation for Design and Operation of Anaerobic Digestion Using GA-ANN and NSGA-II
,”
J. Chem. Technol. Biotechnol.
,
91
(
1
), pp.
226
233
.
40.
Yu
,
J. B.
,
Yu
,
Y.
,
Wang
,
L. N.
,
Yuan
,
Z.
, and
Ji
,
X.
,
2014
, “
The Knowledge Modeling System of Ready-Mixed Concrete Enterprise and Artificial Intelligence With ANN-GA for Manufacturing Production
,”
J. Intell. Manuf.
,
27
(
4
), pp.
905
914
.
41.
Trenn
,
S.
,
2008
, “
Multilayer Perceptrons: Approximation Order and Necessary Number of Hidden Units
,”
IEEE Trans. Neural Networks
,
19
(
5
), pp.
836
844
.
42.
Atik
,
K.
,
Aktaş
,
A.
, and
Deniz
,
E.
,
2010
, “
Performance Parameters Estimation of MAC by Using Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
7
), pp.
5436
5442
.
43.
Sahin
,
I.
, and
Koyuncu
,
I.
,
2012
, “
Design and Implementation of Neural Networks Neurons With Radbas, Logsig, and Tansig Activation Functions on FPGA
,”
Elektron. Elektrotech.
,
120
(
4
), pp.
51
54
.
44.
Levenberg
,
K.
, and
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Problems in Least Squares
,”
Q. Appl. Math.
,
2
(
2
), pp.
164
168
.
You do not currently have access to this content.