Graphene is one of the most promising carbon nanomaterial due to its excellent electrical, thermal, optical, and mechanical properties. However, it is still very challenging to unlock its exotic properties and widely adopt it in real-world applications. In this paper, we introduce a new three-dimensional (3D) graphene structure printing approach with pure graphene oxide (GO) material, better interlayer bonding, and complex architecture printing capability. Various parameters related to this novel process are discussed in detail in order to improve the printability, reliability, and accuracy. We have shown that the print quality largely depends on the duty cycle of print head, applied pressure, and traveling velocity during printing. A set of printed samples are presented to demonstrate the effectiveness of the proposed technique along with the optimal parameter settings. The proposed process proves to be a promising 3D printing technique for fabricating multiscale nanomaterial structures. The theory revealed and parameters investigated herein are expected to significantly advance the knowledge and understanding of the fundamental mechanism of the proposed directional freezing-based 3D nano printing process. Furthermore, the outcome of this research has the potential to open up a new avenue for fabricating multifunctional nanomaterial objects.

References

References
1.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
2.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
3.
Neto
,
A. C.
,
Guinea
,
F.
,
Peres
,
N.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), p.
109
.
4.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. A.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
5.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mater.
,
6
(
3
), pp.
183
191
.
6.
Cong
,
H.-P.
,
Wang
,
P.
, and
Yu
,
S.-H.
,
2013
, “
Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design
,”
Chem. Mater.
,
25
(
16
), pp.
3357
3362
.
7.
Jakus
,
A. E.
,
Secor
,
E. B.
,
Rutz
,
A. L.
,
Jordan
,
S. W.
,
Hersam
,
M. C.
, and
Shah
,
R. N.
,
2015
, “
Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications
,”
ACS Nano
,
9
(
4
), pp.
4636
4648
.
8.
Leigh
,
S. J.
,
Bradley
,
R. J.
,
Purssell
,
C. P.
,
Billson
,
D. R.
, and
Hutchins
,
D. A.
,
2012
, “
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,”
PloS One
,
7
(
11
), p.
e49365
.
9.
Maiti
,
U. N.
,
Lim
,
J.
,
Lee
,
K. E.
,
Lee
,
W. J.
, and
Kim
,
S. O.
,
2014
, “
Three‐Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors
,”
Adv. Mater.
,
26
(
4
), pp.
615
619
.
10.
Menzel
,
R.
,
Barg
,
S.
,
Miranda
,
M.
,
Anthony
,
D. B.
,
Bawaked
,
S. M.
,
Mokhtar
,
M.
,
Al Thabaiti
,
S. A.
,
Basahel
,
S. N.
,
Saiz
,
E.
, and
Shaffer
,
M. S. P.
,
2015
, “
Joule Heating Characteristics of Emulsion‐Templated Graphene Aerogels
,”
Adv. Funct. Mater.
,
25
(
1
), pp.
28
35
.
11.
Wicklein
,
B.
,
Kocjan
,
A.
,
Salazar-Alvarez
,
G.
,
Carosio
,
F.
,
Camino
,
G.
,
Antonietti
,
M.
, and
Bergström
,
L.
,
2015
, “
Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide
,”
Nat. Nanotechnol.
,
10
, pp.
277
283
.
12.
Xu
,
X.
,
Li
,
H.
,
Zhang
,
Q.
,
Hu
,
H.
,
Zhao
,
Z.
,
Li
,
J.
,
Li
,
J.
,
Qiao
,
Y.
, and
Gogotsi
,
Y.
,
2015
, “
Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field
,”
ACS Nano
,
9
(
4
), pp.
3969
3977
.
13.
Ye
,
S.
,
Feng
,
J.
, and
Wu
,
P.
,
2013
, “
Highly Elastic Graphene Oxide–Epoxy Composite Aerogels Via Simple Freeze-Drying and Subsequent Routine Curing
,”
J. Mater. Chem. A
,
1
(
10
), pp.
3495
3502
.
14.
Vickery
,
J. L.
,
Patil
,
A. J.
, and
Mann
,
S.
,
2009
, “
Fabrication of Graphene–Polymer Nanocomposites With Higher‐Order Three‐Dimensional Architectures
,”
Adv. Mater.
,
21
(
21
), pp.
2180
2184
.
15.
Estevez
,
L.
,
Kelarakis
,
A.
,
Gong
,
Q.
,
Da'as
,
E. H.
, and
Giannelis
,
E. P.
,
2011
, “
Multifunctional Graphene/Platinum/Nafion Hybrids Via Ice Templating
,”
J. Am. Chem. Soc.
,
133
(
16
), pp.
6122
6125
.
16.
Sun
,
H.
,
Xu
,
Z.
, and
Gao
,
C.
,
2013
, “
Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels
,”
Adv. Mater.
,
25
(
18
), pp.
2554
2560
.
17.
Nardecchia
,
S.
,
Carriazo
,
D.
,
Ferrer
,
M. L.
,
Gutiérrez
,
M. C.
, and
del Monte
,
F.
,
2013
, “
Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications
,”
Chem. Soc. Rev.
,
42
(
2
), pp.
794
830
.
18.
Yin
,
S.
,
Niu
,
Z.
, and
Chen
,
X.
,
2012
, “
Assembly of Graphene Sheets Into 3D Macroscopic Structures
,”
Small
,
8
(
16
), pp.
2458
2463
.
19.
García-Tuñon
,
E.
,
Barg
,
S.
,
Franco
,
J.
,
Bell
,
R.
,
Eslava
,
S.
,
D'Elia
,
E.
,
Maher
,
R. C.
,
Guitian
,
F.
, and
Saiz
,
E.
,
2015
, “
Printing in Three Dimensions With Graphene
,”
Adv. Mater.
,
27
(
10
), pp.
1688
1693
.
20.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
, p.
6962
.
21.
Raney
,
J. R.
, and
Lewis
,
J. A.
,
2015
, “
Printing Mesoscale Architectures
,”
MRS Bull.
,
40
(
11
), pp.
943
950
.
22.
Sui
,
G.
, and
Leu
,
M. C.
,
2003
, “
Investigation of Layer Thickness and Surface Roughness in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
556
563
.
23.
Barnett
,
E.
,
Angeles
,
J.
,
Pasini
,
D.
, and
Sijpkes
,
P.
,
2009
, “
Robot-Assisted Rapid Prototyping for Ice Structures
,”
IEEE International Conference on Robotics and Automation
, 2009 (
ICRA’09
), May 12–17, pp.
146
151
.
24.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
.
25.
Le
,
L. T.
,
Ervin
,
M. H.
,
Qiu
,
H.
,
Fuchs
,
B. E.
, and
Lee
,
W. Y.
,
2011
, “
Graphene Supercapacitor Electrodes Fabricated by Inkjet Printing and Thermal Reduction of Graphene Oxide
,”
Electrochem. Commun.
,
13
(
4
), pp.
355
358
.
You do not currently have access to this content.