Porous structure has wide application in industry due to some of its unique properties such as low density, low thermal conductivity, high surface area, and efficient stress transmission. Both templating and foaming agent methods have been used to fabricate porous structures. However, these methods can only fabricate simple geometries. In recent years, many studies have been done to use additive manufacturing (AM), e.g., stereolithography apparatus (SLA), in the fabrication of porous structure; however, the porosity that can be achieved is relatively small due to the limited accuracy in building microscale features on a large area. This paper presents a projection-based SLA process to fabricate porous polymer structures using sugar particles as the foaming agent. With a solid loading of 50 wt.% of sugar in photocurable resin, the method can achieve a structure with much higher porosity. As shown in our results, the method can increase the porosity of fabricated scaffold structures by two times when compared to the current SLA method.

References

References
1.
Choi
,
S. J.
,
Kwon
,
T. H.
,
Im
,
H.
,
Moon
,
D. I.
,
Baek
,
D. J.
,
Seol
,
M. L.
,
Duarte
,
J. P.
, and
Choi
,
Y. K.
,
2011
, “
A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil From Water
,”
ACS Appl. Mater. Interfaces
,
3
(
12
), pp.
4552
4556
.
2.
Zhang
,
A.
,
Chen
,
M.
,
Du
,
C.
,
Guo
,
H.
,
Bai
,
H.
, and
Li
,
L.
,
2013
, “
Poly (Dimethylsiloxane) Oil Absorbent With a Three-Dimensionally Interconnected Porous Structure and Swellable Skeleton
,”
ACS Appl. Mater. Interfaces
,
5
(
20
), pp.
10201
10206
.
3.
Chen
,
Z.
,
Xu
,
C.
,
Ma
,
C.
,
Ren
,
W.
, and
Cheng
,
H. M.
,
2013
, “
Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding
,”
Adv. Mater.
,
25
(
9
), pp.
1296
1300
.
4.
Matthieu
,
B.
,
2010
, “
Heat Sink Copper Foam
,”
Wikimedia Commons
, San Francisco, CA.
5.
Videomaker
,
2015
, “
Rode Stereo Videomic X Review
,”
Videomaker, Inc.
, Chico, CA.
6.
Marselli
,
S.
,
Pavia
,
V.
,
Galassi
,
C.
,
Roncari
,
E.
,
Craciun
,
F.
, and
Guidarelli
,
G.
,
1999
, “
Porous Piezoelectric Ceramic Hydrophone
,”
J. Acoust. Soc. Am.
,
106
(
2
), pp.
733
738
.
7.
Cha
,
S.
,
Kim
,
S. M.
,
Kim
,
H.
,
Ku
,
J.
,
Sohn
,
J. I.
,
Park
,
Y. J.
,
Song
,
B. G.
,
Jung
,
M. H.
,
Lee
,
E. K.
,
Choi
,
B. L.
, and
Park
,
J. J.
,
2011
, “
Porous PVDF as Effective Sonic Wave Driven Nanogenerators
,”
Nano Lett.
,
11
(
12
), pp.
5142
5147
.
8.
Kara
,
H.
,
Ramesh
,
R.
,
Stevens
,
R.
, and
Bowen
,
C. R.
,
2003
, “
Porous PZT Ceramics for Receiving Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
3
), pp.
289
296
.
9.
Boumchedda
,
K.
,
Hamadi
,
M.
, and
Fantozzi
,
G.
,
2007
, “
Properties of a Hydrophone Produced With Porous PZT Ceramic
,”
J. Eur. Ceram. Soc.
,
27
(
13
), pp.
4169
4171
.
10.
Lin
,
C. T.
,
Liao
,
L. D.
,
Liu
,
Y. H.
,
Wang
,
I. J.
,
Lin
,
B. S.
, and
Chang
,
J. Y.
,
2011
, “
Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement
,”
IEEE Trans. Biomed. Eng.
,
58
(
5
), pp.
1200
1207
.
11.
Hutmacher
,
D. W.
,
2000
, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
,
21
(
24
), pp.
2529
2543
.
12.
Rodriguez
,
J. N.
,
Yu
,
Y. J.
,
Miller
,
M. W.
,
Wilson
,
T. S.
,
Hartman
,
J.
,
Clubb
,
F. J.
,
Gentry
,
B.
, and
Maitland
,
D. J.
,
2012
, “
Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms
,”
Ann. Biomed. Eng.
,
40
(
4
), pp.
883
897
.
13.
Daniel
,
I. M.
, and
Cho
,
J. M.
,
2011
, “
Characterization of Anisotropic Polymeric Foam Under Static and Dynamic Loading
,”
Exp. Mech.
,
51
(
8
), pp.
1395
1403
.
14.
Hung
,
T. C.
,
Huang
,
J. S.
,
Wang
,
Y. W.
, and
Lin
,
K. Y.
,
2014
, “
Inorganic Polymeric Foam as a Sound Absorbing and Insulating Material
,”
Constr. Build. Mater.
,
50
, pp.
328
334
.
15.
Patrick
,
J. F.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2012
, “
Microvascular Based Self-Healing Polymeric Foam
,”
Polymer
,
53
(
19
), pp.
4231
4240
.
16.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
17.
Karageorgiou
,
V.
, and
Kaplan
,
D.
,
2005
, “
Porosity of 3D Biomaterial Scaffolds and Osteogenesis
,”
Biomaterials
,
26
(
27
), pp.
5474
5491
.
18.
Chen
,
S.
,
He
,
G.
,
Hu
,
H.
,
Jin
,
S.
,
Zhou
,
Y.
,
He
,
Y.
,
He
,
S.
,
Zhao
,
F.
, and
Hou
,
H.
,
2013
, “
Elastic Carbon Foam Via Direct Carbonization of Polymer Foam for Flexible Electrodes and Organic Chemical Absorption
,”
Energy Environ. Sci.
,
6
(
8
), pp.
2435
2439
.
19.
Shastri
,
V. P.
,
Martin
,
I.
, and
Langer
,
R.
,
2000
, “
Macroporous Polymer Foams by Hydrocarbon Templating
,”
Proc. Natl. Acad. Sci. U.S.A.
,
97
(
5
), pp.
1970
1975
.
20.
Lee
,
D.
,
Lee
,
J.
,
Kim
,
J.
,
Na
,
H. B.
,
Kim
,
B.
,
Shin
,
C. H.
,
Kwak
,
J. H.
,
Dohnalkova
,
A.
,
Grate
,
J. W.
,
Hyeon
,
T.
, and
Kim
,
H. S.
,
2005
, “
Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam
,”
Adv. Mater.
,
17
(
23
), pp.
2828
2833
.
21.
Ramay
,
H. R.
, and
Zhang
,
M.
,
2003
, “
Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-Casting and Polymer Sponge Methods
,”
Biomaterials
,
24
(
19
), pp.
3293
3302
.
22.
Fukasawa
,
T.
,
Ando
,
M.
,
Ohji
,
T.
, and
Kanzaki
,
S.
,
2001
, “
Synthesis of Porous Ceramics With Complex Pore Structure by Freeze-Dry Processing
,”
J. Am. Ceram. Soc.
,
84
(
1
), pp.
230
232
.
23.
Liao
,
C. J.
,
Chen
,
C. F.
,
Chen
,
J. H.
,
Chiang
,
S. F.
,
Lin
,
Y. J.
, and
Chang
,
K. Y.
,
2002
, “
Fabrication of Porous Biodegradable Polymer Scaffolds Using a Solvent Merging/Particulate Leaching Method
,”
J. Biomed. Mater. Res.
,
59
(
4
), pp.
676
681
.
24.
Mikos
,
A. G.
,
Thorsen
,
A. J.
,
Czerwonka
,
L. A.
,
Bao
,
Y.
,
Langer
,
R.
,
Winslow
,
D. N.
, and
Vacanti
,
J. P.
,
1994
, “
Preparation and Characterization of Poly (L-Lactic Acid) Foams
,”
Polymer
,
35
(
5
), pp.
1068
1077
.
25.
Hou
,
Q. P.
,
Grijpma
,
D. W.
, and
Feijen
,
J.
,
2003
, “
Porous Polymeric Structures for Tissue Engineering Prepared by a Coagulation, Compression Moulding and Salt Leaching Technique
,”
Biomaterials
,
24
(
11
), pp.
1937
1947
.
26.
McCall
,
W. R.
,
Kim
,
K.
,
Heath
,
C.
,
La Pierre
,
G.
, and
Sirbuly
,
D. J.
,
2014
, “
Piezoelectric Nanoparticle–Polymer Composite Foams
,”
ACS Appl. Mater. Interfaces
,
6
(
22
), pp.
19504
19509
.
27.
Lin
,
Q.
,
Luo
,
B.
,
Qu
,
L.
,
Fang
,
C.
, and
Chen
,
Z.
,
2013
, “
Direct Preparation of Carbon Foam by Pyrolysis of Cyanate Ester Resin at Ambient Pressure
,”
J. Anal. Appl. Pyrolysis
,
104
, pp.
714
717
.
28.
Dey
,
A.
,
Kayal
,
N.
, and
Chakrabarti
,
O.
,
2011
, “
Preparation of Porous SiC Ceramics by an Infiltration Technique
,”
Ceram. Int.
,
37
(
1
), pp.
223
230
.
29.
Bai
,
C. Y.
,
Deng
,
X. Y.
,
Li
,
J. B.
,
Jing
,
Y. N.
,
Jiang
,
W. K.
,
Liu
,
Z. M.
, and
Li
,
Y.
,
2014
, “
Fabrication and Properties of Cordierite–Mullite Bonded Porous SiC Ceramics
,”
Ceram. Int.
,
40
(
4
), pp.
6225
6231
.
30.
Gauvin
,
R.
,
Chen
,
Y. C.
,
Lee
,
J. W.
,
Soman
,
P.
,
Zorlutuna
,
P.
,
Nichol
,
J. W.
,
Bae
,
H.
,
Chen
,
S.
, and
Khademhosseini
,
A.
,
2012
, “
Microfabrication of Complex Porous Tissue Engineering Scaffolds Using 3D Projection Stereolithography
,”
Biomaterials
,
33
(
15
), pp.
3824
3834
.
31.
Cooke
,
M. N.
,
Fisher
,
J. P.
,
Dean
,
D.
,
Rimnac
,
C.
, and
Mikos
,
A. G.
,
2003
, “
Use of Stereolithography to Manufacture Critical-Sized 3D Biodegradable Scaffolds for Bone Ingrowth
,”
J. Biomed. Mater. Res., Part B
,
64
(
2
), pp.
65
69
.
32.
Song
,
X.
, and
Chen
,
Y.
,
2012
, “
Joint Design for 3-D Printing Non-Assembly Mechanisms
,”
ASME
Paper No. DETC2012-71528.
33.
Song
,
X.
,
Chen
,
Y.
,
Lee
,
T. W.
,
Wu
,
S.
, and
Cheng
,
L.
,
2015
, “
Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated With Tape-Casting
,”
J. Manuf. Processes
,
20
, pp.
456
464
.
34.
EnvisionTEC
,
2008
, “
SI500 Technical Data
,”
Envisiontec, Inc.
, Dearborn, MI.
35.
Griffith
,
M. L.
, and
Halloran
,
J. W.
,
1996
, “
Freeform Fabrication of Ceramics Via Stereolithography
,”
J. Am. Ceram. Soc.
,
79
(
10
), pp.
2601
2608
.
36.
Song
,
X.
,
Chen
,
Z.
,
Lei
,
L.
,
Shung
,
K.
,
Zhou
,
Q.
, and
Chen
,
Y.
, “
Piezoelectric Component Fabrication Using Projection-Based Stereolithography of Barium Titanate Ceramic Suspensions
,”
Rapid Prototyping J.
,
23
(
1
) (in press).
37.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.
38.
Chen
,
Z.
,
Song
,
X.
,
Lei
,
L.
,
Chen
,
X.
,
Fei
,
C.
,
Chiu
,
C. T.
,
Qian
,
X.
,
Ma
,
T.
,
Yang
,
Y.
,
Shung
,
K.
, and
Chen
,
Y.
,
2016
, “
3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing
,”
Nano Energy
,
27
, pp.
78
86
.
39.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhu
,
B.
,
Hsiai
,
T.
,
Wu
,
P. I.
,
Xiong
,
R.
,
Shi
,
J.
,
Chen
,
Y.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2016
, “
Three Dimensional Printing of High Dielectric Capacitor Using Projection Based Stereolithography Method
,”
Nano Energy
,
22
, pp.
414
421
.
40.
Masaro
,
L.
, and
Zhu
,
X. X.
,
1999
, “
Physical Models of Diffusion for Polymer Solutions, Gels and Solids
,”
Prog. Polym. Sci.
,
24
(
5
), pp.
731
775
.
41.
Shen
,
C. H.
, and
Springer
,
G. S.
,
1976
, “
Moisture Absorption and Desorption of Composite Materials
,”
J. Compos. Mater.
,
10
(
1
), pp.
2
20
.
42.
Klemens
,
P. G.
,
1990
, “
Thermal Conductivity of Composites
,”
Int. J. Thermophys.
,
11
(
5
), pp.
971
976
.
You do not currently have access to this content.