It is often desired to increase the machining rate while maintaining the desired surface and subsurface integrity during fabricating high-quality optical glass components. This paper proposed a high-speed high-efficiency low-damage grinding technology for machining brittle optical materials, which consists of three grinding processes: rough grinding, semifinishing grinding, and finishing grinding. Grinding characteristics are investigated with respect to grinding forces, specific cutting energy, surface roughness, ground surface quality, subsurface damage, and material removal mechanisms in grinding of fused silica optical glasses with this technology at grinding speeds of up to 150 m/s. These indications are thoroughly discussed by contacting the undeformed chip thickness. The results indicate that the level of these indications is significantly improved with an increase in the wheel speed due to the decrease of the undeformed chip thickness. It is also found that the improvement of ground surface quality is limited when the wheel speed increases from 120 m/s to 150 m/s, which may be due to the influence of vibration caused by the higher wheel speed. For different grinding processes, these results are also substantially improved with the change of grinding conditions. It is found that the material removal mechanism is dominated by brittle fracture at rough and semifinishing grinding processes, while ductile flow mode can be observed at the finishing grinding process. There are some differences between the experimental results and the previous predicted model of subsurface damage depth.

References

References
1.
Axinte
,
E.
,
2011
, “
Glasses as Engineering Materials: A Review
,”
Mater. Des.
,
32
(
4
), pp.
1717
1732
.
2.
An
,
Q.
,
Ming
,
W.
, and
Chen
,
M.
,
2015
, “
Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses
,”
Materials
,
8
(
4
), pp.
1428
1441
.
3.
Campbell
,
J. H.
,
2002
, “
Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge
,”
Proceedings of the First International Workshop on Glass and the Photonics Revolution
, Bad Soden, Germany, May 29–29, pp. 91–108.
4.
Miller
,
P. E.
,
Suratwala
,
T. I.
,
Wong
,
L. L.
, Feit, M. D., Menapace, J. A., Davis, P. J., and Steele, R. A.,
2005
, “
The Distribution of Subsurface Damage in Fused Silica
,”
Proc. SPIE
,
5991
, pp.
1
25
.
5.
Esmaeilzare
,
A.
,
Rahimi
,
A.
, and
Rezaei
,
S. M.
,
2014
, “
Investigation of Subsurface Damages and Surface Roughness in Grinding Process of Zerodur® Glass–Ceramic
,”
Appl. Surf. Sci.
,
313
, pp.
67
75
.
6.
Zhao
,
Q.
,
Liang
,
Y.
,
Stephenson
,
D.
, and Corbett, J.,
2007
, “
Surface and Subsurface Integrity in Diamond Grinding of Optical Glasses on Tetraform ‘C’
,”
Int. J. Mach. Tools Manuf.
,
47
(
14
), pp.
2091
2097
.
7.
Kordonski
,
W. L.
, and
Golini
,
D.
,
1999
, “
Fundamentals of Magneto Rheological Fluid Utilization in High Precision Finishing
,”
J. Intell. Mater. Syst. Struct.
,
10
(
9
), pp.
683
689
.
8.
Verma
,
Y.
,
Chang
,
A. K.
,
Berrett
,
J. W.
, Futtere, K., Gardopee, G. J., Kelley, J., Kyler, T., Lee, J., Lyford, N., Proscia, D. and Sommer, P. R.,
2006
, “
Rapid Damage-Free Shaping of Silicon Carbide Using Reactive Atom Plasma (RAP) Processing
,”
Proc. SPIE
, 62730, pp.
1
8
.
9.
Kanaoka
,
M.
,
Liu
,
C.
, and
Nomura
,
K.
,
2008
, “
Processing Efficiency of Elastic Emission Machining for Low-Thermal-Expansion Material
,”
Surf. Interface Anal.
,
40
(6–7), pp.
1002
1006
.
10.
Tong
,
S.
,
Gracewski
,
S. M.
, and
Funkenbusch
,
P. D.
,
2006
, “
Measurement of the Preston Coefficient of Resin and Bronze Bond Tools for Deterministic Microgrinding of Glass
,”
Precis. Eng.
,
30
(
2
), pp.
115
122
.
11.
Klocke
,
F.
,
Brinksmeier
,
E.
,
Evans
,
C.
, Howes, T., Inasaki, I., Minke, E., H Tonshoff, J A. Webster, and Stuff, D.,
1997
, “
High Speed Grinding—Fundamental and State of Art in Europe, Japan and USA
,”
CIRP Ann. Manuf. Technol.
,
46
(2), pp.
715
724
.
12.
Huang
,
H.
,
Yin
,
L.
, and
Zhou
,
L.
,
2003
, “
High Speed Grinding of Silicon Nitride With Resin Bond Diamond Wheels
,”
J. Mater. Process. Technol.
,
141
(
3
), pp.
329
336
.
13.
Lang
,
L. Ü.
,
Xiong
,
W. L.
, and
Gao
,
H.
,
2008
, “
Mechanical-Electric Coupling Dynamical Characteristics of All Ultra-High Speed Grinding Motorized Spindle System
,”
Chin. J. Mech. Eng.
,
21
(5) pp.
34
40
.
14.
Ramesh
,
K.
,
Huang
,
H.
, and
Yin
,
L.
,
2004
, “
Analytical and Experimental Investigation of Coolant Velocity in High Speed Grinding
,”
Int. J. Mach. Tools Manuf.
,
44
(10), pp. 1069–1076.
15.
Chen
,
J.
,
Shen
,
J.
,
Huang
,
H.
, and
Xu
,
X.
,
2010
, “
Grinding Characteristics in High Speed Grinding of Engineering Ceramics With Brazed Diamond Wheels
,”
J. Mater. Process. Technol.
,
210
(6–7), pp.
899
906
.
16.
Rowe
,
W. B.
,
2013
,
Principles of Modern Grinding Technology
,
2nd ed
,
William Andrew
,
Kidlington, UK
.
17.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Industrial Press
,
Dearborn, MI
.
18.
Shaw
,
M.
,
1996
,
Principles of Abrasive Processing
,
Oxford University Press
,
Oxford, UK
.
19.
Jahanmir
,
S.
,
Xu
,
H. K.
, and
Ives
,
L. K.
,
1999
,”
Mechanisms of Material Removal in Abrasive Machining of Ceramics
,”
Manufacturing Engineering and Materials Processing
,
Vol.
53
, CRC Press, FL, pp.
11
84
.
20.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
,
Leuven
,
Belgium
, pp. 623–638.
21.
Gutowski
,
T. G.
,
Branham
,
M. S.
,
Dahmus
,
J. B.
,
Jones
,
A. J.
,
Thiriez
,
A.
, and
Sekulic
,
D. P.
,
2009
, “
Thermodynamic Analysis of Resources Used in Manufacturing Processes
,”
Environ. Sci. Technol.
,
43
(
5
), pp.
1584
1590
.
22.
Marshall
,
D. B.
,
Lawn
,
B. R.
, and
Cook
,
R. F.
,
1987
, “
Microstructural Effects on Grinding of Alumina and Glass-Ceramics
,”
Commun. Am. Ceram. Soc.
,
70
(6), pp.
139
140
.
23.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile-Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
(2), pp.
184
189
.
24.
Lambropoulos
,
J. C.
,
Jacobs
,
S. D.
, and
Ruckman
,
J.
,
1999
, “
Material Removal Mechanisms From Grinding to Polishing
,”
Ceram. Trans
.
102
, pp.
113
128
.
25.
Li
,
Y.
,
Zheng
,
N.
,
Li
,
H.
, Hou, J., Lei, X., Chen, X., Yuan, Z., Guo, Z., Wang, J., Guo, Y. and Xu, Q.,
2011
, “
Morphology and Distribution of Subsurface Damage in Optical Fused Silica Parts: Bound-Abrasive Grinding
,”
Appl. Surf. Sci.
,
257
(
6
), pp.
2066
2073
.
26.
Li
,
S.
,
Wang
,
Z.
, and
Wu
,
Y.
,
2008
, “
Relationship Between Subsurface Damage and Surface Roughness of Optical Materials in Grinding and Lapping Processes
,”
J. Mater. Process. Technol.
,
205
(1–3), pp.
34
41
.
27.
Mahmoud
,
T. A.
,
Tamaki
,
J.
, and
Yan
,
J. W.
,
2003
, “
Three-Dimensional Shape Modeling of Diamond Abrasive Grains Measured by a Scanning Laser Microscope
,”
Key Eng. Mater.
,
238–239
, pp.
131
136
.
You do not currently have access to this content.