In this paper, techniques of direct printing of capacitive touch sensors on flexible substrates are presented. Capacitive touch sensors were fabricated by using electrohydrodynamic inkjet (E-jet) printing onto flexible substrates. Touch pad sensors can be achieved with optimized design of silver nanoink tracks. An analytical model was developed to predict touch pad capacitance, and experiments were conducted to study the effects of sensor design (e.g., number of electrodes, electrode length, and electrode distance) on the capacitance of printed coplanar capacitance touch sensors. Details of the fabrication techniques were developed to enable rapid prototype flexible sensors with simple structure and good sensitivity. The presented techniques can be used for the on-demand fabrication of different conductive patterns for flexible electronics with high resolution and good transparency

References

References
1.
Melzer
,
M.
,
Mönch
,
J. I.
,
Makarov
,
D.
,
Zabila
,
Y.
,
Cañón Bermúdez
,
G. S.
,
Karnaushenko
,
D.
,
Baunack
,
S.
,
Bahr
,
F.
,
Yan
,
C.
, and
Kaltenbrunner
,
M.
,
2015
, “
Wearable Magnetic Field Sensors for Flexible Electronics
,”
Adv. Mater.
,
27
(
7
), pp.
1274
1280
.
2.
van den Brand
,
J.
,
de Kok
,
M.
,
Sridhar
,
A.
,
Cauwe
,
M.
,
Verplancke
,
R.
,
Bossuyt
,
F.
,
De Baets
,
J.
, and
Vanfleteren
,
J.
,
2014
, “
Flexible and Stretchable Electronics for Wearable Healthcare
,”
2014 44th European Solid State Device Research Conference
(
ESSDERC
), IEEE, Venice, Italy, Sept. 22–26, pp.
206
209
.
3.
Chang
,
H. C.
,
Liu
,
C. L.
, and
Chen
,
W. C.
,
2013
, “
Flexible Nonvolatile Transistor Memory Devices Based on One‐Dimensional Electrospun P3HT: Au Hybrid Nanofibers
,”
Adv. Funct. Mater.
,
23
(
39
), pp.
4960
4968
.
4.
Lin
,
K. L.
, and
Jain
,
K.
,
2009
, “
Design and Fabrication of Stretchable Multilayer Self-Aligned Interconnects for Flexible Electronics and Large-Area Sensor Arrays Using Excimer Laser Photoablation
,”
IEEE Electron Device Lett.
,
30
(
1
), pp.
14
17
.
5.
Kaltenbrunner
,
M.
,
White
,
M. S.
,
Głowacki
,
E. D.
,
Sekitani
,
T.
,
Someya
,
T.
,
Sariciftci
,
N. S.
, and
Bauer
,
S.
,
2012
, “
Ultrathin and Lightweight Organic Solar Cells With High Flexibility
,”
Nat. Commun.
,
3
, p.
770
.
6.
Leonat
,
L.
,
White
,
M. S.
,
Głowacki
,
E. D.
,
Scharber
,
M. C.
,
Zillger
,
T.
,
Ruühling
,
J.
,
Huübler
,
A.
, and
Sariciftci
,
N. S.
,
2014
, “
4% Efficient Polymer Solar Cells on Paper Substrates
,”
J. Phys. Chem. C
,
118
(
30
), pp.
16813
16817
.
7.
Kim
,
K.-S.
,
Bang
,
J.-O.
, and
Jung
,
S.-B.
,
2013
, “
Electrochemical Migration Behavior of Silver Nanopaste Screen-Printed for Flexible and Printable Electronics
,”
Curr. Appl. Phys.
,
13
(
Suppl. 2
), pp.
S190
S194
.
8.
Lee
,
S.
,
Jeon
,
S.
,
Chaji
,
R.
, and
Nathan
,
A.
,
2015
, “
Transparent Semiconducting Oxide Technology for Touch Free Interactive Flexible Displays
,”
Proc. IEEE
,
103
(
4
), pp.
644
664
.
9.
Mariotti
,
C.
,
Su
,
W.
,
Cook
,
B. S.
,
Roselli
,
L.
, and
Tentzeris
,
M. M.
,
2015
, “
Development of Low Cost, Wireless, Inkjet Printed Microfluidic RF Systems and Devices for Sensing or Tunable Electronics
,”
IEEE Sens. J.
,
15
(
6
), pp.
3156
3163
.
10.
Crabb
,
R.
, and
Treble
,
F.
,
1967
, “
Thin Silicon Solar Cells for Large Flexible Arrays
,”
Nature
,
213
(
5082
), pp.
1223
1224
.
11.
Ray
,
K. A.
,
1967
, “
Flexible Solar Cell Arrays for Increased Space Power
,”
IEEE Trans. Aerosp. Electron. Syst.
,
3
(
1
), pp.
107
115
.
12.
Wong
,
W. S.
, and
Salleo
,
A.
,
2009
,
Flexible Electronics: Materials and Applications
,
Springer Science & Business Media
,
New York
.
13.
Eltaib
,
M.
, and
Hewit
,
J.
,
2003
, “
Tactile Sensing Technology for Minimal Access Surgery––A Review
,”
Mechatronics
,
13
(
10
), pp.
1163
1177
.
14.
Walker
,
G.
,
2012
, “
A Review of Technologies for Sensing Contact Location on the Surface of a Display
,”
J. Soc. Inf. Disp.
,
20
(
8
), pp.
413
440
.
15.
Kyberd
,
P. J.
, and
Chappell
,
P. H.
,
1992
, “
Characterization of an Optical and Acoustic Touch and Slip Sensor for Autonomous Manipulation
,”
Meas. Sci. Technol.
,
3
(
10
), pp.
969
975
.
16.
Lee
,
M. H.
, and
Nicholls
,
H. R.
,
1999
, “
Review Article Tactile Sensing for Mechatronics—A State of the Art Survey
,”
Mechatronics
,
9
(
1
), pp.
1
31
.
17.
Phares
,
R.
, and
Fihn
,
M.
,
2012
, “
Introduction to Touchscreen Technologies
,”
Handbook of Visual Display Technology
,
Springer
,
New York
, pp.
935
974
.
18.
Elbuken
,
C.
,
Glawdel
,
T.
,
Chan
,
D.
, and
Ren
,
C. L.
,
2011
, “
Detection of Microdroplet Size and Speed Using Capacitive Sensors
,”
Sens. Actuators, A
,
171
(
2
), pp.
55
62
.
19.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
20.
Yan
,
X.
, and
Gu
,
P.
,
1996
, “
A Review of Rapid Prototyping Technologies and Systems
,”
Comput.-Aided Des.
,
28
(
4
), pp.
307
318
.
21.
Bourell
,
D.
,
Beaman
,
J.
,
Leu
,
M. C.
, and
Rosen
,
D.
,
2009
, “
A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead
,”
RapidTech
, Sept. 24, pp.
24
25
.
22.
Shim
,
J.-H.
,
Lee
,
J.-S.
,
Kim
,
J. Y.
, and
Cho
,
D.-W.
,
2012
, “
Bioprinting of a Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using a Multi-Head Tissue/Organ Building System
,”
J. Micromech. Microeng.
,
22
(
8
), p.
085014
.
23.
de Gans
,
B. J.
,
Duineveld
,
P. C.
, and
Schubert
,
U. S.
,
2004
, “
Inkjet Printing of Polymers: State of the Art and Future Developments
,”
Adv. Mater.
,
16
(
3
), pp.
203
213
.
24.
Lee
,
D.
,
Hwang
,
E.
,
Yu
,
T.
,
Kim
,
Y.
, and
Hwang
,
J.
,
2006
, “
Structuring of Micro Line Conductor Using Electro-Hydrodynamic Printing of a Silver Nanoparticle Suspension
,”
Appl. Phys. A
,
82
(
4
), pp.
671
674
.
25.
Barrett
,
G.
, and
Omote
,
R.
,
2010
, “
Projected-Capacitive Touch Technology
,”
Inf. Disp.
,
26
(
3
), pp.
16
21
.
26.
Chenchi
,
L.
,
Borkar
,
M. A.
,
Redfern
,
A. J.
, and
McClellan
,
J. H.
,
2012
, “
Compressive Sensing for Sparse Touch Detection on Capacitive Touch Screens
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
,
2
(
3
), pp.
639
648
.
27.
Mamishev
,
A. V.
,
Sundara-Rajan
,
K.
,
Yang
,
F.
,
Du
,
Y.
, and
Zahn
,
M.
,
2004
, “
Interdigital Sensors and Transducers
,”
Proc. IEEE
,
92
(
5
), pp.
808
845
.
28.
Chen
,
J. Z.
,
Darhuber
,
A. A.
,
Troian
,
S. M.
, and
Wagner
,
S.
,
2004
, “
Capacitive Sensing of Droplets for Microfluidic Devices Based on Thermocapillary Actuation
,”
Lab Chip
,
4
(
5
), pp.
473
480
.
29.
Mutiso
,
R. M.
,
Sherrott
,
M. C.
,
Rathmell
,
A. R.
,
Wiley
,
B. J.
, and
Winey
,
K. I.
,
2013
, “
Integrating Simulations and Experiments to Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors
,”
ACS Nano
,
7
(
9
), pp.
7654
7663
.
30.
Gabriel
,
S.
,
Lau
,
R.
, and
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues
,”
Phys. Med. Biol.
,
41
(
11
), pp.
2271
2293
.
31.
Wu
,
Z.
,
Chen
,
Z.
,
Du
,
X.
,
Logan
,
J. M.
,
Sippel
,
J.
,
Nikolou
,
M.
,
Kamaras
,
K.
,
Reynolds
,
J. R.
,
Tanner
,
D. B.
, and
Hebard
,
A. F.
,
2004
, “
Transparent, Conductive Carbon Nanotube Films
,”
Science
,
305
(
5688
), pp.
1273
1276
.
32.
Zhang
,
D.
,
Ryu
,
K.
,
Liu
,
X.
,
Polikarpov
,
E.
,
Ly
,
J.
,
Tompson
,
M. E.
, and
Zhou
,
C.
,
2006
, “
Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes
,”
Nano Lett.
,
6
(
9
), pp.
1880
1886
.
33.
Zhang
,
M.
,
Fang
,
S.
,
Zakhidov
,
A. A.
,
Lee
,
S. B.
,
Aliev
,
A. E.
,
Williams
,
C. D.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
,
2005
, “
Strong, Transparent, Multifunctional, Carbon Nanotube Sheets
,”
Science
,
309
(
5738
), pp.
1215
1219
.
34.
Kim
,
K. S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S. Y.
,
Kim
,
J. M.
,
Kim
,
K. S.
,
Ahn
,
J.-H.
,
Kim
,
P.
,
Choi
,
J.-Y.
, and
Hong
,
B. H.
,
2009
, “
Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes
,”
Nature
,
457
(
7230
), pp.
706
710
.
35.
Wu
,
J.
,
Agrawal
,
M.
,
Becerril
,
H. A.
,
Bao
,
Z.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Peumans
,
P.
,
2009
, “
Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes
,”
ACS Nano
,
4
(
1
), pp.
43
48
.
36.
Huang
,
J.-H.
,
Kekuda
,
D.
,
Chu
,
C.-W.
, and
Ho
,
K.-C.
,
2009
, “
Electrochemical Characterization of the Solvent-Enhanced Conductivity of Poly (3, 4-Ethylenedioxythiophene) and Its Application in Polymer Solar Cells
,”
J. Mater. Chem.
,
19
(
22
), pp.
3704
3712
.
37.
Yoo
,
J. E.
,
Lee
,
K. S.
,
Garcia
,
A.
,
Tarver
,
J.
,
Gomez
,
E. D.
,
Baldwin
,
K.
,
Sun
,
Y.
,
Meng
,
H.
,
Nguyen
,
T.-Q.
, and
Loo
,
Y.-L.
,
2010
, “
Directly Patternable, Highly Conducting Polymers for Broad Applications in Organic Electronics
,”
Proc. Natl. Acad. Sci.
,
107
(
13
), pp.
5712
5717
.
38.
Meiss
,
J.
,
Riede
,
M.
, and
Leo
,
K.
,
2009
, “
Towards Efficient Tin-Doped Indium Oxide (ITO)-Free Inverted Organic Solar Cells Using Metal Cathodes
,”
Appl. Phys. Lett.
,
94
(
1
), p.
013303
.
39.
O'Connor
,
B.
,
Haughn
,
C.
,
An
,
K.-H.
,
Pipe
,
K. P.
, and
Shtein
,
M.
,
2008
, “
Transparent and Conductive Electrodes Based on Unpatterned, Thin Metal Films
,”
Appl. Phys. Lett.
,
93
(
22
), p.
223304
.
40.
Parashkov
,
R.
,
Becker
,
E.
,
Riedl
,
T.
,
Johannes
,
H.-H.
, and
Kowalsky
,
W.
,
2005
, “
Large Area Electronics Using Printing Methods
,”
Proc. IEEE
,
93
(
7
), pp.
1321
1329
.
41.
Heller
,
M. J.
,
2002
, “
DNA Microarray Technology: Devices, Systems, and Applications
,”
Annu. Rev. Biomed. Eng.
,
4
(
1
), pp.
129
153
.
42.
Bietsch
,
A.
,
Zhang
,
J.
,
Hegner
,
M.
,
Lang
,
H. P.
, and
Gerber
,
C.
,
2004
, “
Rapid Functionalization of Cantilever Array Sensors by Inkjet Printing
,”
Nanotechnology
,
15
(
8
), pp.
873
880
.
43.
Wang
,
Z.
,
Shang
,
H.
, and
Lee
,
G. U.
,
2006
, “
Nanoliter-Scale Reactor Arrays for Biochemical Sensing
,”
Langmuir
,
22
(
16
), pp.
6723
6726
.
44.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
, and
Georgiadis
,
J. G.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
45.
Stutzmann
,
N.
,
Friend
,
R. H.
, and
Sirringhaus
,
H.
,
2003
, “
Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors
,”
Science
,
299
(
5614
), pp.
1881
1884
.
46.
Qin
,
H.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2015
, “
Electrohydrodynamic Jet Printing of Silver Seeds: Micro Scale Patterning by Electrolyses Copper Deposition
,”
ASME
Paper No. MSEC2015-9487.
47.
Qin
,
H.
,
Wei
,
C.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2014
, “
AC-Pulse Modulated Electrohydrodynamic (EHD) Jet Printing of Conductive Micro Silver Tracks for Micro-Manufacturing
,”
The FAIM 2014 Flexible Automation and Intelligent Manufacturing Conference
, San Antonio, TX, pp.
20
23
.
48.
Qin
,
H.
,
Wei
,
C.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2014
, “
Direct Fabrication of Highly Conductive Micro Silver Tracks Using Electrohydrodynamic Jet Printing for Sub-20 μM Micro-Manufacturing
,”
ASME
Paper No. MSEC2014-4163.
You do not currently have access to this content.