In this paper, the method, system setup, and procedure of a new additive manufacturing (AM) technology for manufacturing three-dimensional (3D) metal parts are introduced. Instead of using metal powders as in most commercial AM technologies, the new method uses metal foils as feed stock. The procedure consists of two alternating processes: foil-welding by a high-power continuous-wave (CW) laser and foil-cutting by a Q-switched ultraviolet (UV) laser. The foil-welding process involves two subprocesses: laser spot welding and laser raster-scan welding. The reason for using two lasers is to achieve simultaneously the high-speed and high-precision manufacturing. The results on laser foil-welding and foil-cutting show that complete and strong welding bonds can be achieved with determined parameters, and that clean and no-burr/distortion cut of foil can be obtained. Several 3D AISI 1010 steel parts fabricated by the proposed AM technology are presented, and the microhardness and tensile strength of the as-fabricated parts are both significantly greater than those of the original foil.

References

References
1.
Wohlers
,
T. T.
, and
Gornet
,
T.
,
2012
, “
History of Additive Manufacturing
,”
Wohlers Associates
, Fort Collins, CO.
2.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9–12
), pp.
1147
1155
.
3.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
4.
Uriondo
,
A.
,
Esperon-Miguez
,
M.
, and
Perinpanayagam
,
S.
,
2015
, “
The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects
,”
Proc. Inst. Mech. Eng. Part G
,
229
(
11
), pp.
2132
2147
.
5.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S. F.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.
6.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
7.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
8.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
9.
Kumar
,
S.
, and
Pityana
,
S.
,
2011
, “
Laser-Based Additive Manufacturing of Metals
,”
AIP Conf. Proc.
,
227
, pp.
92
95
.
10.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.
11.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p.
208760
.
12.
Hardjadinata
,
G.
, and
Doumanidis
,
C. C.
,
2001
, “
Rapid Prototyping by Laser Foil Bonding and Cutting: Thermomechanical Modeling and Process Optimization
,”
J. Manuf. Processes
,
3
(
2
), pp.
108
119
.
13.
Prechtl
,
M.
,
Otto
,
A.
, and
Geiger
,
M.
,
2005
, “
Rapid Tooling by Laminated Object Manufacturing of Metal Foil
,”
Adv. Mater. Res.
,
6–8
, pp.
303
312
.
14.
Steen
,
M. W.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
,
London
, Chap. 4.
15.
Xie
,
J.
, and
Kar
,
A.
,
1999
, “
Laser Welding of Thin Sheet Steel With Surface Oxidation
,”
Weld. J.
,
78
(
10
), pp.
343
348
.
16.
Okamoto
,
Y.
,
Gillner
,
A.
,
Olowinsky
,
A.
,
Gedicke
,
J.
, and
Uno
,
Y.
,
2008
, “
Fine Micro-Welding of Thin Stainless Steel Sheet by High Speed Laser Scanning
,”
J. Laser Micro Nanoeng.
,
3
(
2
), pp.
95
99
.
17.
Abe
,
N.
,
Funada
,
Y.
, and
Ishide
,
M.
,
2003
, “
Micro-Welding of Thin Foil With Direct Diode Laser
,”
Fourth International Symposium on Laser Precision Microfabrication
, Vol.
5063
, pp.
287
291
.
18.
Liao
,
Y. C.
, and
Yu
,
M. H.
,
2007
, “
Effects of Laser Beam Energy and Incident Angle on the Pulse Laser Welding of Stainless Steel Thin Sheet
,”
J. Mater. Process. Technol.
,
190
(
1–3
), pp.
102
108
.
19.
Krasnoperov
,
M. Y.
,
Pieters
,
R. R. G. M.
, and
Richardson
, I
. M.
,
2004
, “
Weld Pool Geometry During Keyhole Laser Welding of Thin Steel Sheets
,”
Sci. Technol. Weld. Joining J.
,
9
(
6
), pp.
501
506
.
20.
Kralj
,
S.
,
Bauer
,
B.
, and
Kozuh
,
Z.
,
2003
, “
Laser Welding of Thin Sheet Heat-Treatable Steel
,”
Annals of DAAAM for 2003, 14th International DAAAM Symposium
, B. Katalinic, ed., Sarajevo, BOSNIA & HERCEG, pp.
245
246
.
21.
Kah
,
P.
,
Suoranta
,
R.
, and
Martikainen
,
J.
,
2011
, “
Joining of Sheet Metals Using Different Welding Processes
,”
Mechanika 2011,16th International Conference
, Kaunas University of Technology, Lithuania, pp.
158
163
.
22.
Farid
,
M.
, and
Molian
,
P. A.
,
2000
, “
High-Brightness Laser Welding of Thin-Sheet 316 Stainless Steel
,”
J. Mater. Sci.
,
35
(
15
), pp.
3817
3826
.
23.
Steen
,
M. W.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
,
London
, Chap. 3.
24.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
25.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
You do not currently have access to this content.