The objectives of this paper in the context of aerosol jet printing (AJP)—an additive manufacturing (AM) process—are to: (1) realize in situ online monitoring of print quality in terms of line/electronic trace morphology; and (2) explain the causal aerodynamic interactions that govern line morphology based on a two-dimensional computational fluid dynamics (2D-CFD) model. To realize these objectives, an Optomec AJ-300 aerosol jet printer was instrumented with a charge coupled device (CCD) camera mounted coaxial to the nozzle (perpendicular to the platen). Experiments were conducted by varying two process parameters, namely, sheath gas flow rate (ShGFR) and carrier gas flow rate (CGFR). The morphology of the deposited lines was captured from the online CCD images. Subsequently, using a novel digital image processing method proposed in this study, six line morphology attributes were quantified. The quantified line morphology attributes are: (1) line width, (2) line density, (3) line edge quality/smoothness, (4) overspray (OS), (5) line discontinuity, and (6) internal connectivity. The experimentally observed line morphology trends as a function of ShGFR and CGFR were verified with computational fluid dynamics (CFD) simulations. The image-based line morphology quantifiers proposed in this work can be used for online detection of incipient process drifts, while the CFD model is valuable to ascertain the appropriate corrective action to bring the process back in control in case of a drift.

References

References
1.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.-Manuf. Technol.
,
57
(
2
), pp.
601
620
.
2.
Hoey
,
J. M.
,
Lutfurakhmanov
,
A.
,
Schulz
,
D. L.
, and
Akhatov
,
I. S.
,
2012
, “
A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics
,”
J. Nanotechnol.
,
2012
, p.
324380
.
3.
Christenson
,
K. K.
,
Paulsen
,
J. A.
,
Renn
,
M. J.
,
McDonald
,
K.
, and
Bourassa
,
J.
,
2011
, “
Direct Printing of Circuit Boards Using Aerosol Jet
,”
27th International Conference on Digital Printing Technologies (NIP27) & Digital Fabrication Conference
, St. Paul, MN, Oct. 2–6, pp.
433
436
.
4.
Hedges
,
M.
, and
Marin
,
A. B.
,
2012
, “
3D Aerosol Jet Printing-Adding Electronics Functionality to RP/RM
,”
The Fraunhofer Direct Digital Manufacturing Conference (DDMC)
, Berlin, Germany, Mar. 14–15, 2012, pp.
14
15
.
5.
Tait
,
J. G.
,
Witkowska
,
E.
,
Hirade
,
M.
,
Ke
,
T.-H.
,
Malinowski
,
P. E.
,
Steudel
,
S.
,
Adachi
,
C.
, and
Heremans
,
P.
,
2015
, “
Uniform Aerosol Jet Printed Polymer Lines With 30 μm Width for 140ppi Resolution RGB Organic Light Emitting Diodes
,”
Org. Electron.
,
22
, pp.
40
43
.
6.
Daniel
,
J.
,
2010
, “
Printed Electronics: Technologies, Challenges, and Applications
,”
International Workshop on Flexible Printed Electronics (IWFPE 10)
, Muju Resort, Korea, Sept. 8–10, pp.
8
10
.
7.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), pp.
434
437
.
8.
Perez
,
K. B.
, and
Williams
,
C. B.
,
2013
, “
Combining Additive Manufacturing and Direct Write for Integrated Electronics—A Review
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, 2013.
9.
Perez
,
K. B.
, and
Williams
,
C. B.
,
2014
, “
Design Considerations for Hybridizing Additive Manufacturing and Direct Write Technologies
,”
ASME
Paper No. DETC2014-35408, p. V004T06A005.
10.
Xia
,
Y.
,
Zhang
,
W.
,
Ha
,
M.
,
Cho
,
J. H.
,
Renn
,
M. J.
,
Kim
,
C. H.
, and
Frisbie
,
C. D.
,
2010
, “
Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits
,”
Adv. Funct. Mater.
,
20
(
4
), pp.
587
594
.
11.
Parekh
,
D. P.
,
Cormier
,
D.
, and
Dickey
,
M. D.
,
2015
, “
Multifunctional Printing: Incorporating Electronics Into 3D Parts Made by Additive Manufacturing
,”
Additive Manufacturing
,
A.
Bandyopadhyay
and
S.
Bose
, eds.,
CRC Press
,
Boca Raton, FL
, p.
215
.
12.
Ahn
,
B. Y.
, and
Lewis
,
J. A.
,
2014
, “
Amphiphilic Silver Particles for Conductive Inks With Controlled Wetting Behavior
,”
Mater. Chem. Phys.
,
148
(
3
), pp.
686
691
.
13.
Chou
,
J.
,
McAllister
,
M.
, and
Schottland
,
P.
,
2014
, “
Aerosol Jet Printable Metal Conductive Inks, Glass Coated Metal Conductive Inks and UV-Curable Dielectric Inks and Methods of Preparing and Printing the Same
,” U.S. Patent No. 2014/0035995 A1.
14.
King
,
B.
, and
Renn
,
M.
,
2009
, “
Aerosol Jet Direct Write Printing for Mil-Aero Electronic Applications
,” Lockheed Martin Palo Alto Colloquia, Palo Alto, CA.
15.
Seifert
,
T.
,
Baum
,
M.
,
Roscher
,
F.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2015
, “
Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects
,”
Mater. Today: Proc.
,
2
(
8
), pp.
4262
4271
.
16.
Stoukatch
,
S.
,
Laurent
,
P.
,
Dricot
,
S.
,
Axisa
,
F.
,
Seronveaux
,
L.
,
Vandormael
,
D.
,
Beeckman
,
E.
,
Heusdens
,
B.
, and
Destiné
,
J.
,
2012
, “
Evaluation of Aerosol Jet Printing (AJP) Technology for Electronic Packaging and Interconnect Technique
,”
4th Electronic System-Integration Technology Conference (ESTC)
, Amsterdam, The Netherlands, Sept. 17–20, pp.
1
5
.
17.
Wadhwa
,
A.
,
2015
, “
Run-Time Ink Stability in Pneumatic Aerosol Jet Printing Using a Split Stream Solvent Add Back System
,” M.S. thesis, Advisor: Denis Cormier, Department of Industrial and Systems Engineering,
Rochester Institute of Technology
,
Rochester, NY
.
18.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.
19.
Paulsen
,
J.
,
Renn
,
M.
,
Christenson
,
K.
, and
Plourde
,
R.
,
2012
, “
Printing Conformal Electronics on 3D Structures With Aerosol Jet Technology
,”
Future of Instrumentation International Workshop (FIIW)
, Gatlinburg, TN, Oct. 8–9, pp.
1
4
.
20.
Blumenthal
,
T.
,
Fratello
,
V.
,
Nino
,
G.
, and
Ritala
,
K.
,
2013
, “
Conformal Printing of Sensors on 3D and Flexible Surfaces Using Aerosol Jet Deposition
,”
Proc. SPIE
8691, Nanosensors, Biosensors, and Info-Tech Sensors and Systems, San Diego, CA, Mar. 10–14, pp.
86910P
86919
.
21.
Jabari
,
E.
, and
Toyserkani
,
E.
,
2015
, “
Micro-Scale Aerosol-Jet Printing of Graphene Interconnects
,”
Carbon
,
91
, pp.
321
329
.
22.
Navratil
,
J.
,
Hamacek
,
A.
,
Reboun
,
J.
, and
Soukup
,
R.
,
2015
, “
Perspective Methods of Creating Conductive Paths by Aerosol Jet Printing Technology
,”
38th International Spring Seminar on Electronics Technology (ISSE)
, Eger, Hungary, May 6–10, pp.
36
39
.
23.
Rahman
,
T.
,
Renaud
,
L.
,
Heo
,
D.
,
Renn
,
M.
, and
Panat
,
R.
,
2015
, “
Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures
,”
J. Micromech. Microeng.
,
25
(
10
), p.
107002
.
24.
Robinson
,
M. J.
,
2012
, “
Experimental Characterization of Aerosol Flow through Micro-Capillaries
,” M.S. thesis, Advisor: Iskander Akhatov,
Department of Mechanical Engineering and Applied Mechanics, North Dakota State University
,
Fargo, ND
.
25.
Wang
,
F.-X.
,
Lin
,
J.
,
Gu
,
W.-B.
,
Liu
,
Y.-Q.
,
Wu
,
H.-D.
, and
Pan
,
G.-B.
,
2013
, “
Aerosol-Jet Printing of Nanowire Networks of Zinc Octaethylporphyrin and Its Application in Flexible Photodetectors
,”
Chem. Commun.
,
49
(
24
), pp.
2433
2435
.
26.
Wang
,
S.-W.
,
Lin
,
H.-Y.
,
Lin
,
C.-C.
,
Kao
,
T. S.
,
Chen
,
K.-J.
,
Han
,
H.-V.
,
Li
,
J.-R.
,
Lee
,
P.-T.
,
Chen
,
H.-M.
, and
Hong
,
M.-H.
,
2016
, “
Pulsed-Laser Micropatterned Quantum-Dot Array for White Light Source
,”
Sci. Rep.
,
6
, p.
23563
.
27.
Zhao
,
D.
,
Liu
,
T.
,
Zhang
,
M.
,
Chen
,
J.-M.
, and
Wang
,
B.
,
2012
, “
Nanotube-Enhanced Aerosol-Jet Printed Electronics for Embedded Sensing of Composite Structural Health
,”
Materials Research Society
Proceedings, pp.
mrsf11-1407
aa1415-1401
.
28.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
29.
Lee
,
G.-Y.
,
Park
,
J.-I.
,
Kim
,
C.-S.
,
Yoon
,
H.-S.
,
Yang
,
J.
, and
Ahn
,
S.-H.
,
2014
, “
Aerodynamically Focused Nanoparticle (AFN) Printing: Novel Direct Printing Technique of Solvent-Free and Inorganic Nanoparticles
,”
ACS Appl. Mater. Interfaces
,
6
(
19
), pp.
16466
16471
.
30.
Mahajan
,
A.
,
Hyun
,
W. J.
,
Walker
,
S. B.
,
Lewis
,
J. A.
,
Francis
,
L. F.
, and
Frisbie
,
C. D.
,
2015
, “
High-Resolution, High-Aspect Ratio Conductive Wires Embedded in Plastic Substrates
,”
ACS Appl. Mater. Interfaces
,
7
(
3
), pp.
1841
1847
.
31.
Seifert
,
T.
,
Sowade
,
E.
,
Roscher
,
F.
,
Wiemer
,
M.
,
Gessner
,
T.
, and
Baumann
,
R. R.
,
2015
, “
Additive Manufacturing Technologies Compared: Morphology of Deposits of Silver Ink Using Inkjet and Aerosol Jet Printing
,”
Ind. Eng. Chem. Res.
,
54
(
2
), pp.
769
779
.
32.
Verheecke
,
W.
,
Van Dyck
,
M.
,
Vogeler
,
F.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2012
, “
Optimizing Aerosol Jet Printing of Silver Interconnects on Polyimide Film for Embedded Electronics Applications
,”
8th International Danube Adria Association for Automation and Manufacturing Baltic Conference “Industrial Engineering
,” Tallinn, Estonia, Apr. 19–21, pp.
373
379
.
33.
Vogeler
,
F.
,
Verheecke
,
W.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2013
, “
An Initial Study Into Aerosol Jet Printed Interconnections on Extrusion Based 3D Printed Substrates
,”
Strojniski Vestn.-J. Mech. Eng.
,
59
(
11
), pp.
689
696
.
34.
Schulz
,
D.
,
Hoey
,
J.
,
Thompson
,
D.
,
Swenson
,
O.
,
Han
,
S.
,
Lovaasen
,
J.
,
Dai
,
X.
,
Braun
,
C.
,
Keller
,
K.
, and
Akhatov
,
I.
,
2010
, “
Collimated Aerosol Beam Deposition: Sub 5-μm Resolution of Printed Actives and Passives
,”
IEEE Transactions on Advanced Packaging
,
33
(
2
), pp.
421
427
.
35.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Focusing in Micro-Capillaries: Theory and Experiment
,”
J. Aerosol Sci.
,
39
(
8
), pp.
691
709
.
36.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Flow Through a Long Micro-Capillary: Collimated Aerosol Beam
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
215
224
.
37.
Akhatov
,
I. S.
,
Hoey
,
J. M.
,
Thompson
,
D.
,
Lutfurakhmanov
,
A.
,
Mahmud
,
Z.
,
Swenson
,
O. F.
,
Schulz
,
D. L.
, and
Osiptsov
,
A. N.
,
2009
, “
Aerosol Flow Through a Micro-Capillary
,”
ASME
Paper No. MNHMT2009-18421, pp.
223
232
.
38.
Feng
,
J. Q.
,
2016
, “
A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,”
Phys.-Fluid Dyn.
, epub, arXiv.org, Cornell University Library, Cornell, NY.
39.
Feng
,
J. Q.
,
2015
, “
Sessile Drop Deformations Under an Impinging Jet
,”
Theor. Comput. Fluid Dyn.
,
29
(
4
), pp.
277
290
.
40.
McCormack
,
B.
,
1992
, “
Test Coupons as an Aid to Process Control of the PCB Manufacturing and Assembly Processes
,”
Circuit World
,
18
(
3
), pp.
17
20
.
41.
King
,
B. H.
,
2014
, “
Miniature Aerosol Jet and Aerosol Jet Array
,”
U.S. Patent No. 8640975 B2
.
42.
Park
,
J.
,
Jeong
,
J.
,
Kim
,
C.
, and
Hwang
,
J.
,
2013
, “
Deposition of Charged Aerosol Particles on a Substrate by Collimating through an Electric Field Assisted Coaxial Flow Nozzle
,”
Aerosol Sci. Technol.
,
47
(
5
), pp.
512
519
.
43.
Eckstein
,
R.
,
Hernandez-Sosa
,
G.
,
Lemmer
,
U.
, and
Mechau
,
N.
,
2014
, “
Aerosol Jet Printed Top Grids for Organic Optoelectronic Devices
,”
Org. Electron.
,
15
(
9
), pp.
2135
2140
.
44.
Shin
,
D.-Y.
,
Seo
,
J.-Y.
,
Tak
,
H.
, and
Byun
,
D.
,
2015
, “
Bimodally Dispersed Silver Paste for the Metallization of a Crystalline Silicon Solar Cell Using Electrohydrodynamic Jet Printing
,”
Sol. Energy Mater. Sol. Cells
,
136
, pp.
148
156
.
45.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
46.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education in South Asia
,
Noida, India
.
47.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
New York
.
48.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
49.
ANSYS-Fluent
,
2012
, “
14.5 Theory Guide
,” ANSYS, Canonsburg, PA.
50.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
51.
Marshall
,
J.
,
2009
, “
Discrete-Element Modeling of Particulate Aerosol Flows
,”
J. Comput. Phys.
,
228
(
5
), pp.
1541
1561
.
52.
Canuto
,
C. G.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A. M.
, and
Zang
,
T. A.
,
2007
,
Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation)
,
1st ed.
,
Springer-Verlag
,
Berlin/Heidelberg, Germany
.
53.
Nixon
,
M.
,
2008
,
Feature Extraction & Image Processing for Computer Vision
,
3rd ed.
,
Academic Press (Elsevier)
,
London, UK
.
54.
Aström
,
K. J.
, and
Murray
,
R. M.
,
2010
,
Feedback Systems: An Introduction for Scientists and Engineers
,
Princeton University Press
,
Princeton, NJ
.
55.
Wescott
,
T.
,
2011
,
Applied Control Theory for Embedded Systems
,
Newnes (Elsevier)
,
Burlington, MA
.
56.
Hoerber
,
J.
,
Goth
,
C.
,
Franke
,
J.
, and
Hedges
,
M.
,
2011
, “
Electrical Functionalization of Thermoplastic Materials by Aerosol Jet Printing
,”
13th Institute of Electrical and Electronics Engineers Electronics Packaging Technology Conference (EPTC)
, Singapore, Dec. 7–9, pp.
813
818
.
57.
Liu
,
R.
,
Shen
,
F.
,
Ding
,
H.
,
Lin
,
J.
,
Gu
,
W.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2013
, “
All-Carbon-Based Field Effect Transistors Fabricated by Aerosol Jet Printing on Flexible Substrates
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065027
.
58.
Rao
,
P. K.
,
Beyca
,
O. F.
,
Kong
,
Z.
,
Bukkaptanam
,
S. T.
,
Case
,
K. E.
, and
Komanduri
,
R.
,
2015
, “
A Graph Theoretic Approach for Quantification of Surface Morphology and Its Application to Chemical Mechanical Planarization (CMP) Process
,”
IIE Trans.
,
47
(
10
), pp.
1088
1111
.
59.
Rao
,
P. K.
,
Kong
,
Z.
,
Duty
,
C. E.
,
Smith
,
R. J.
,
Kunc
,
V.
, and
Love
,
L. J.
,
2016
, “
Assessment of Dimensional Integrity and Spatial Defect Localization in Additive Manufacturing Using Spectral Graph Theory
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051007
.
60.
Lappa
,
M.
,
2009
,
Thermal Convection: Patterns, Evolution and Stability
,
1st ed.
,
Wiley
,
West Sussex, UK
.
61.
Estellers
,
V.
,
Thiran
,
J.-P.
, and
Gabrani
,
M.
,
2014
, “
Surface Reconstruction from Microscopic Images in Optical Lithography
,”
IEEE Trans. Image Process.
,
23
(
8
), pp.
3560
3573
.
62.
Zhang
,
C.
,
Huang
,
P. S.
, and
Chiang
,
F.-P.
,
2002
, “
Microscopic Phase-Shifting Profilometry Based on Digital Micromirror Device Technology
,”
Appl. Opt.
,
41
(
28
), pp.
5896
5904
.
You do not currently have access to this content.