There has been continuing effort in developing analytical, numerical, and empirical models of laser-based additive manufacturing (AM) processes in the literature. However, advanced physics-based models that can be directly used for feedback control design, i.e., control-oriented models, are severely lacking. In this paper, we develop a physics-based multivariable model for directed energy deposition. One important difference between our model from the existing work lies in a novel parameterization of the material transfer rate in the deposition as a function of the process operating parameters. Such parameterization allows an improved characterization of the steady-state melt-pool geometry compared to the existing lumped-parameter models. Predictions of melt-pool geometry and temperature from our model are validated using experimental data obtained from deposition of Ti-6AL-4V and deposition of Inconel® 718 on a laser engineering net shaping (LENS) AM process and finite-element analysis. Then based on this multivariable model, we design a nonlinear multi-input multi-output (MIMO) control, specifically a feedback linearization (FL) control, to track both melt-pool height and temperature reference trajectories using laser power and laser scan speed.

References

References
1.
Ocwe
,
W.
,
Meiners
,
W.
,
Wissenbach
,
K.
,
Lindemann
,
M.
, and
Hamman
,
G.
,
2001
, “
Selective Laser Melting: A New Approach for the Direct Manufacturing of Metal Parts and Tools
,”
Laser Assisted Net Shape Engineering (LANE) Conference
, pp.
391
398
.
2.
Ribeiro
,
A. F.
,
Norrish
,
J.
, and
McMaster
,
R. S.
,
1994
, “
Practical Case of Rapid Prototyping Using Gas Metal Arc Welding
,”
Fifth International Conference on Computer Technology in Welding
, Paris, France, July.
3.
Das
,
S.
,
Wohlert
,
M.
,
Beaman
,
J. J.
, and
Bourell
,
D. L.
,
1998
, “
Producing Metal Parts With Selective Laser Sintering/Hot Isostatic Pressing
,”
JOM
,
50
(
12
), pp.
17
20
.
4.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
,
2006
, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tools Manuf.
,
46
(
12
), pp.
1459
1468
.
5.
Mazumder
,
J.
,
Koch
,
J.
,
Nagarathnam
,
K.
, and
Choi
,
J.
,
1996
, “
Rapid Manufacturing by Laser Aided Direct Deposition of Metals
,”
Adv. Powder Metall. Part. Mater.
,
4
(
1
), pp.
15
107
.
6.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
, and
Smugeresky
,
J. E.
,
1999
, “
Understanding Thermal Behavior in the Lens Process
,”
Mater. Des.
,
20
(
2
), pp.
107
113
.
7.
Beuth
,
J.
, and
Klingbeil
,
N.
,
2001
, “
The Role of Process Variables in Laser-Based Direct Metal Solid Freeform Fabrication
,”
JOM
,
53
(
9
), pp.
36
39
.
8.
Gibbons
,
G. J.
, and
Hansell
,
R. G.
,
2005
, “
Direct Tool Steel Injection Mould Inserts Through the Arcam EBM Free-Form Fabrication Process
,”
Assem. Autom.
,
25
(
4
), pp.
300
305
.
9.
Yamada
,
K.
,
Morisita
,
S.
,
Kutsuna
,
M.
, and
Ikeda
,
T.
,
2003
, “
Direct Diode Laser Cladding of Co Based Alloy to Dual Phase Stainless Steel for Repairing the Machinery Parts
,”
Proc. SPIE
4831
, pp.
65
70
.
10.
Krantz
,
D.
,
Nasla
,
S.
,
Byrne
,
J.
, and
Rosenberger
,
B.
,
2001
, “
On-Demand Spares Fabrication During Space Missions Using Laser Direct Metal Deposition
,”
AIP Conf. Proc.
,
552
(
1
), p.
170
.
11.
Hu
,
Y.
,
Chen
,
C.
, and
Mukherjee
,
K.
,
1998
, “
Innovative Laser-Aided Manufacturing of Patterned Stamping and Cutting Dies: Processing Parameters
,”
Mater. Manuf. Processes
,
13
(
3
), pp.
369
387
.
12.
Resch
,
M.
,
Kaplan
,
A. F. H.
, and
Schuoecker
,
D.
,
2001
, “
Laser-Assisted Generating of Three-Dimensional Parts by the Blown Powder Process
,”
Proc. SPIE
4184
, pp.
555
558
.
13.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z.-K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L.-Q.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1–4,
pp.
52
63
.
14.
Roberts
, I
. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12
), pp.
916
923
.
15.
Yang
,
Y.-P.
, and
Babu
,
S. S.
,
2010
, “
An Integrated Model to Simulate Laser Cladding Manufacturing Process for Engine Repair Applications
,”
Weld. World
,
54
(
9–10
), pp.
R298
R307
.
16.
Anca
,
A.
,
Fachinotti
,
V. D.
,
Escobar-Palafox
,
G.
, and
Cardona
,
A.
,
2011
, “
Computational Modelling of Shaped Metal Deposition
,”
Int. J. Numer. Methods Eng.
,
85
(
1
), pp.
84
106
.
17.
Lundbäck
,
A.
, and
Lindgren
,
L.-E.
,
2011
, “
Modelling of Metal Deposition
,”
Finite Elem. Anal. Des.
,
47
(
10
), pp.
1169
1177
.
18.
Campoli
,
G.
,
Borleffs
,
M. S.
,
Yavari
,
S. A.
,
Wauthle
,
R.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing
,”
Mater. Des.
,
49
(
1
), pp.
957
965
.
19.
Marimuthu
,
S.
,
Clark
,
D.
,
Allen
,
J.
,
Kamara
,
A. M.
,
Mativenga
,
P.
,
Li
,
L.
, and
Scudamore
,
R.
,
2013
, “
Finite Element Modelling of Substrate Thermal Distortion in Direct Laser Additive Manufacture of an Aero-Engine Component
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
9
), pp.
1987
1999
.
20.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
(
1
), pp.
51
60
.
21.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2015
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4V
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
10
), pp.
1803
1813
.
22.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
23.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
,
5
(
1
), pp.
9
19
.
24.
Gouge
,
M. F.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Modeling Forced Convection in the Thermal Simulation of Laser Cladding Processes
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
307
320
.
25.
Smyshlyaev
,
A.
, and
Krstic
,
M.
,
2010
,
Adaptive Control of Parabolic PDEs
,
Princeton University Press
,
Princeton, NJ
.
26.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
247
256
.
27.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
28.
Toyserkani
,
E.
, and
Khajepour
,
A.
,
2006
, “
A Mechatronics Approach to Laser Powder Deposition Process
,”
Mechatronics
,
16
(
10
), pp.
631
641
.
29.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24–29, pp.
521
527
.
30.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p. 011010.
31.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
280
292
.
32.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p. 031003.
33.
Doumanidis
,
C.
, and
Kwak
,
Y.-M.
,
2001
, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
45
52
.
34.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.
35.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2014
, “
Control-Oriented Modeling of Laser Metal Deposition as a Repetitive Process
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
1817
1820
.
36.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Control-Oriented MIMO Modeling of Laser-Aided Powder Deposition Processes
,”
American Control Conference
, Chicago, IL, July 1–3, pp.
3637
3642
.
37.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4
), pp.
397
414
.
38.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
39.
Bi
,
G.
,
Schürmann
,
B.
,
Gasser
,
A.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2007
, “
Development and Qualification of a Novel Laser-Cladding Head With Integrated Sensors
,”
Int. J. Mach. Tools Manuf.
,
47
(
3
), pp.
555
561
.
40.
Hua
,
Y.
, and
Choi
,
J.
,
2005
, “
Feedback Control Effects on Dimensions and Defects of H13 Tool Steel by Direct Metal Deposition Process
,”
J. Laser Appl.
,
17
(
2
), p.
118
.
41.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process (Iterative Learning Control)
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
.
42.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Iterative Learning Control of Bead Morphology in Laser Metal Deposition Processes
,”
American Control Conference
(
ACC
), Washington DC, June 17–19, pp.
5942
5947
.
43.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p. 011011.
44.
Heralić
,
A.
,
Christiansson
,
A.-K.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.
45.
Wang
,
Q.
,
Li
,
J.
,
Gouge
,
M.
,
Nassar
,
A. R.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2016
, “
Reduced-Order Multivariable Modeling and Nonlinear Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition
,”
American Control Conference
, Boston, MA, July 6–8, pp.
845
851
.
46.
Lin
,
J.
, and
Steen
,
W. M.
,
1998
, “
An In-Process Method for the Inverse Estimation of the Powder Catchment Efficiency During Laser Cladding
,”
Opt. Laser Technol.
,
30
(
2
), pp.
77
84
.
47.
Eagar
,
T. W.
, and
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
48.
Christensen
,
N.
,
Davies
,
V.
,
de
,
L.
, and
Gjermundsen
,
K.
,
1965
, “
Distribution of Temperatures in Arc Welding
,”
Br. Weld. J.
,
12
(
2
), pp.
54
75
.
49.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J.
,
20
(
5
), pp.
220
234
.
50.
Autodesk
,
2016
, “
Project Pan
,”
Autodesk
, State College, PA.
51.
Basu
,
B.
, and
Srinivasan
,
J.
,
1988
, “
Numerical Study of Steady-State Laser Melting Problem
,”
Int. J. Heat Mass Transfer
,
31
(
11
), pp.
2331
2338
.
52.
Goldak
,
J.
,
Bibby
,
M.
,
Moore
,
J.
,
House
,
R.
, and
Patel
,
B.
,
1986
, “
Computer Modeling of Heat Flow in Welds
,”
Metall. Trans. B
,
17
(
3
), pp.
587
600
.
53.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E. W.
,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
54.
Special Metals
,
2007
, “
Inconel Alloy 718
,” Technical Report Publication No. SMC-045.
55.
Khalil
,
H. K.
, and
Grizzle
,
J. W.
,
2002
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.