Incremental forming of thermoplastic surfaces has recently received significant interest due to the potential for simultaneous reduction in thermal energy consumption and in part-shape specific tooling. This paper examines the mechanical properties and the chain orientation of the formed material in single point incremental forming (SPIF) of amorphous polyvinyl chloride (PVC) and semicrystalline polyamide sheets. Tensile and stress relaxation properties of the formed polymers are compared to those of the unformed polymer. The effect of incremental depth and tool rotation speed on the above properties, and on the temperature rise of the sheet during SPIF, is quantified. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) are used to compare the chain orientation and crystallinity of the formed and the unformed polymers. It is observed that the formed material has greater toughness and ductility, but lower yield stress and reduced Young's modulus, as compared to the unformed material. We also observe deformation-induced chain reorientation in the formed polymer, with minimal change in the degree of crystallinity. The link between the SPIF process parameters, temperature rise of the polymer during SPIF, change in chain orientation, and change in mechanical properties of the polymer is discussed.

References

References
1.
Franzen
,
V.
,
Kwiatkowski
,
L.
,
Martins
,
P. A. F.
, and
Tekkaya
,
A. E.
,
2009
, “
Single Point Incremental Forming of PVC
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
462
469
.
2.
Davarpanah
,
M. A.
,
Mirkouei
,
A.
,
Yu
,
X.
,
Malhotra
,
R.
, and
Pilla
,
S.
,
2015
, “
Effects of Incremental Depth and Tool Rotation on Failure Modes and Microstructural Properties in Single Point Incremental Forming of Polymers
,”
J. Mater. Process. Technol.
,
222
, pp.
287
300
.
3.
Franzen
,
V.
,
Kwiatkowski
,
L.
,
Neves
,
J.
,
Martins
,
P. A. F.
, and
Tekkaya
,
A. E.
,
2008
, “
On the Capability of Single Point Incremental Forming for Manufacturing PVC Sheet Parts
,”
9th International Conference on Technology of Plasticity
, ICTP-2008, Gyeongju, Korea, Sept. 7–11.
4.
Silva
,
M. B.
,
Alves
,
L. M.
, and
Martins
,
P. A. F.
,
2010
, “
Single Point Incremental Forming of PVC: Experimental Findings and Theoretical Interpretation
,”
Eur. J. Mech.-A/Solids
,
29
(
4
), pp.
557
566
.
5.
Yonan
,
S. A.
,
Silva
,
M. B.
,
Martins
,
P. A. F.
, and
Tekkaya
,
A. E.
,
2014
, “
Plastic Flow and Failure in Single Point Incremental Forming of PVC Sheets
,”
eXPRESS Polym. Lett.
,
8
(
5
), pp.
301
311
.
6.
Bagudanch
,
I.
,
Garcia-Romeu
,
M. L.
,
Centeno
,
G.
,
Elías-Zúñiga
,
A.
, and
Ciurana
,
J.
,
2015
, “
Forming Force and Temperature Effects on Single Point Incremental Forming of Polyvinylchloride
,”
J. Mater. Process. Technol.
,
219
, pp.
221
229
.
7.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann.-Manuf. Technol.
,
54
(
1
), pp.
88
114
.
8.
Danner
,
R. P.
, and
High
,
M. S.
,
1993
,
Handbook of Polymer Solution Thermodynamics
,
American Institute of Chemical Engineers
,
New York
.
9.
Pilla
,
S.
,
Gong
,
S.
,
O'Neill
,
E.
,
Rowell
,
R. M.
, and
Krzy
,
A. M.
,
2008
, “
Polylactide-Pine Woodflour Composites
,”
Polym. Eng. Sci.
,
48
(
3
), pp.
578
587
.
10.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
,
9
(
6
), pp.
697
720
.
11.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
(
2–3
), pp.
193
212
.
12.
Ward
,
I.
,
1975
,
Structure and Properties of Oriented Polymers
,
Springer Science+Business Media
,
Dordrecht, The Netherlands
.
13.
Landel
,
R. F.
, and
Nielsen
,
L. E.
,
1994
,
Mechanical Properties of Polymers and Composites
,
2nd ed.
,
Marcel Dekker
,
New York
.
14.
Shin
,
E.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1993
, “
The Brittle-to-Ductile Transition in Microlayer Composites
,”
J. Appl. Polym. Sci.
,
47
(
2
), pp.
269
288
.
15.
Takahashi
,
J.
,
Yamamoto
,
T.
, and
Shizawa
,
K.
,
2010
, “
Modeling and Simulation for Ductile Fracture Prediction of Crystalline Polymer Based on Craze Behavior
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
266
276
.
16.
Tim.
,
O.
,
2010
,
Understanding Polymer Processing: Processes and Governing Equations
,
Hanser Publications
,
Cincinnati, OH
, pp.
29
54
.
17.
Argon
,
A. S.
,
2013
,
The Physics of Deformation and Fracture of Polymers
,
Cambridge University Press
,
New York
.
18.
Yeh
,
I.-C.
,
Andzelm
,
J. W.
, and
Rutledge
,
G. C.
,
2015
, “
Mechanical and Structural Characterization of Semicrystalline Polyethylene Under Tensile Deformation by Molecular Dynamics Simulations
,”
Macromolecules
,
48
(
12
), pp.
4228
4239
.
19.
Jabbari-Farouji
,
S.
,
Rottler
,
J.
,
Lame
,
O.
,
Makke
,
A.
,
Perez
,
M.
, and
Barrat
,
J.-L.
,
2015
, “
Plastic Deformation Mechanisms of Semicrystalline and Amorphous Polymers
,”
ACS Macro Lett.
,
4
(
2
), pp.
147
150
.
20.
Jabbari-Farouji
,
S.
,
Rottler
,
J.
,
Lame
,
O.
,
Makke
,
A.
,
Perez
,
M.
, and
Barrat
,
J.-L.
,
2015
, “
Correlation of Structure and Mechanical Response in Solid-Like Polymers
,”
J. Phys.: Condens. Matter
,
27
(
19
), p.
194131
.
21.
Hiss
,
R.
,
Hobeika
,
S.
,
Lynn
,
C.
, and
Strobl
,
G.
,
1999
, “
Network Stretching, Slip Processes, and Fragmentation of Crystallites During Uniaxial Drawing of Polyethylene and Related Copolymers. A Comparative Study
,”
Macromolecules
,
32
(
13
), pp.
4390
4403
.
22.
O'Kane
,
W. J.
, and
Young
,
R. J.
,
1995
, “
The Role of Dislocations in the Yield of Polypropylene
,”
J. Mater. Sci. Lett.
,
14
(
6
), pp.
433
435
.
23.
O'Kane
,
W. J.
,
Young
,
R. J.
, and
Ryan
,
A. J. J.
,
1995
, “
The Effect of Annealing on the Structure and Properties of Isotactic Polypropylene Films
,”
J. Macromol. Sci., Part B: Phys.
,
34
(
4
), pp.
427
458
.
24.
Dusunceli
,
N.
, and
Colak
,
O. U.
,
2007
, “
Modelling Effects of Degree of Crystallinity on Mechanical Behavior of Semicrystalline Polymers
,”
Int. J. Plast.
,
24
(
7
), pp.
1224
1242
.
You do not currently have access to this content.