This paper presents a geometric error compensation method for large five-axis machine tools. Compared to smaller machine tools, the longer axis travels and bigger structures of a large machine tool make them more susceptible to complicated, position-dependent geometric errors. The compensation method presented in this paper uses tool tip measurements recorded throughout the axis space to construct an explicit model of a machine tool's geometric errors from which a corresponding set of compensation tables are constructed. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. Two position-dependent geometric error models are considered in this paper. The first model utilizes a six degree-of-freedom kinematic error description at each axis. The second model is motivated by the structure of table compensation solutions and describes geometric errors as small perturbations to the axis commands. The parameters of both models are identified from the measurement data using a maximum likelihood estimator. Compensation tables are generated by projecting the error model onto the compensation space created by the compensation tables available in the machine tool controller. The first model provides a more intuitive accounting of simple geometric errors than the second; however, it also increases the complexity of projecting the errors onto compensation tables. Experimental results on a commercial five-axis machine tool are presented and analyzed. Despite significant differences in the machine tool error descriptions, both methods produce similar results, within the repeatability of the machine tool. Reasons for this result are discussed. Analysis of the models and compensation tables reveals significant complicated, and unexpected kinematic behavior in the experimental machine tool. A particular strength of the proposed methodology is the simultaneous generation of a complete set of compensation tables that accurately captures complicated kinematic errors independent of whether they arise from expected and unexpected sources.

References

References
1.
Bringmann
,
B.
,
Besuchet
,
J. P.
, and
Rohr
,
L.
,
2008
, “
Systematic Evaluation of Calibration Methods
,”
CIRP Ann. –Manuf. Technol.
,
57
(
1
), pp.
529
532
.
2.
ISO
,
2012
, “
Test Code for Machine Tools Part I: Geometric Accuracy of Machine Tools Operating Under No-Load or Quasi-Static Conditions
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 230-1.
3.
Ibaraki
,
S.
,
Kimura
,
Y.
,
Nagai
,
Y.
, and
Nishikawa
,
S.
,
2015
, “
Formulation of Influence of Machine Geometric Errors on Five-Axis On-Machine Scanning Measurement by Using a Laser Displacement Sensor
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021013
.
4.
Tsutsumi
,
M.
, and
Saito
,
A.
,
2003
, “
Identification and Compensation of Systematic Deviations Particular to 5-Axis Machining Centers
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
771
780
.
5.
Zargarbashi
,
S. H. H.
, and
Mayer
,
J. R. R.
,
2006
, “
Assessment of Machine Tool Trunnion Axis Motion Error, Using Magnetic Double Ball Bar
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1823
1834
.
6.
Weikert
,
S.
,
2004
, “
R-Test, a New Device for Accuracy Measurements on 5-Axis Machine Tools
,”
CIRP Ann. –Manuf. Technol.
,
53
(
1
), pp.
429
432
.
7.
Ibaraki
,
S.
,
Oyama
,
C.
, and
Otsubo
,
H.
,
2011
, “
Construction of an Error Map of Rotary Axes on a 5-Axis Machining Center by Static R-Test
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
190
200
.
8.
Erkan
,
T.
, and
Mayer
,
J. R. R.
,
2010
, “
A Cluster Analysis Applied to Volumetric Errors of 5-Axis Machine Tools Obtained by Probing an Uncalibrated Artifact
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
539
542
.
9.
Ibaraki
,
S.
,
Iritani
,
T.
, and
Matsushita
,
T.
,
2012
, “
Calibration of Location Errors of Rotary Axes on 5-Axis Machine Tools by On-the-Machine Measurement Using a Touch-Trigger Probe
,”
Int. J. Mach. Tools Manuf.
,
58
(1), pp.
44
53
.
10.
Jung
,
J.
,
Choi
,
J.
, and
Lee
,
S.
,
2006
, “
Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-Machine Measurement
,”
J. Mater. Process. Technol.
,
174
(1), pp.
56
66
.
11.
Hong
,
C.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
,
2001
, “
Influence of Position Dependent Error of Rotary Axes on a Machining Test of Cone Frustram by 5-Axis Machine Tools
,”
Precis. Eng.
,
35
(
1
), pp.
1
11
.
12.
Ibaraki
,
S.
, and
Knapp
,
W.
,
2012
, “
Indirect Measurement of Volumetric Accuracy for 3-Axis and 5-Axis Machine Tools: A Review
,”
Int. J. Autom. Technol.
,
6
(
2
), pp. 110–124.
13.
Umetsu
,
K.
,
Furutnani
,
R.
,
Osawa
,
S.
,
Takatsuji
,
T.
, and
Kurosawa
,
T.
,
2005
, “
Geometric Calibration of a Coordinate Measuring Machine Using a Laser Tracking System
,”
Meas. Sci. Technol.
,
16
(
12
), pp.
2466
2472
.
14.
Ibaraki
,
S.
,
Hata
,
T.
,
Yano
,
T.
,
Takatsuji
,
T.
,
Osawa
,
S.
, and
Sata
,
O.
,
2009
, “
Estimation of the Three-Dimensional Volumetric Errors of Machine Tools by a Laser Tracker
,”
Asian Symposium for Precision Engineering and Nanotechnology
, Kitakyushu, Japan.
15.
Schwenke
,
H.
,
Franke
,
M.
, and
Hannaford
,
J.
,
2005
, “
Error Mapping of CMMs and Machine Tools by a Single Tracking Interferometer
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
475
478
.
16.
Schwenke
,
H.
,
Schmitt
,
R.
,
Jatzkowskib
,
P.
, and
Warmanna
,
P.
,
2009
, “
On-the-Fly Calibration of Linear and Rotary Axes of Machine Tools and CMMs Using a Tracking Interferometer
,”
CIRP Ann. –Manuf. Technol.
,
58
(
1
), pp.
477
480
.
17.
Freeman
,
P.
,
2006
, “
A Novel Means of Software Compensation for Robots and Machine Tools
,”
Aerospace Manufacturing and Automated Fastening Conference and Exhibition
, Toulouse, France,
SAE
Paper No. 2006-01-3167.
18.
Nubiola
,
A.
, and
Bonev
,
I.
,
2012
, “
Absolute Calibration of an ABB IRB1600 Robot Using a Laser Tracker
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
236
245
.
19.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
20.
Hayati
,
S.
,
1983
, “
Robot Arm Geometric Parameter Estimation
,” 22nd
IEEE
International Conference on Decision Control
, San Antonio, TX, pp.
1477
1483
.
21.
Veitschegger
,
W. K.
, and
Wu
,
C. H.
,
1988
, “
Robot Calibration and Compensation
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
643
656
.
22.
Sheth
,
C.
, and
Uicker
,
J. J.
,
1972
, “
IMP (Integrated Mechanism Program), a Computer-Aided Design Analysis System for Mechanisms and Linkages
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
454
464
.
23.
Soons
,
J.
,
Theuws
,
F.
, and
Schellekens
,
P.
,
1992
, “
Modeling the Errors of Multi-Axis Machines: A General Methodology
,”
Precis. Eng.
,
14
(
1
), pp.
5
19
.
24.
Kiridena
,
V. S. B.
, and
Ferreira
,
P. M.
,
1994
, “
Kinematic Modeling of Quasistatic Errors of 3-Axis Machining Centers
,”
Int. J. Mach. Tools Manuf.
,
34
(
1
), pp.
85
100
.
25.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Hamano
,
F.
,
1992
, “
A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
8
(
4
), pp.
451
463
.
26.
Fan
,
J. W.
,
Guan
,
J. L.
,
Wang
,
W. C.
,
Luo
,
O.
,
Zhang
,
L. X.
, and
Wang
,
L. Y.
,
2002
, “
A Universal Modeling Method for the Enhancement the Volumetric Accuracy of CNC Machine Tools
,”
J. Mater. Process. Technol.
,
129
(1–3), pp.
624
628
.
27.
Yu
,
Z.
,
Tiemin
,
L.
, and
Xiaoqiang
,
T.
,
2011
, “
Geometric Error Modeling of Machine Tools Based on Screw Theory
,”
International Conference on Advances in Engineering
, Beijing, China, pp.
845
849
.
28.
Chen
,
I. M.
,
Yang
,
G.
,
Tan
,
C. T.
, and
Yeo
,
S.
,
2001
, “
Local POE Model for Robot Kinematic Calibration
,”
Mech. Mach. Theory
,
36
(
1
), pp.
1215
1239
.
29.
He
,
R.
,
Zhao
,
S.
, and
Yang
,
S.
,
2010
, “
Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
411
423
.
30.
Lin
,
Y.
, and
Shen
,
Y.
,
2003
, “
Modelling of 5-Axis Machine Tool Metrology Models Using the Matrix Summation Approach
,”
Int. J. Mach. Tools Manuf.
,
21
(
4
), pp.
243
248
.
31.
Mooring
,
B. W.
,
Roth
,
Z. S.
, and
Driels
,
M. R.
,
1991
,
Fundamentals of Manipulator Calibration
,
Wiley
,
New York
.
32.
Sartori
,
S.
, and
Zhang
,
G. X.
,
1995
, “
Geometric Error Measurement and Compensation of Machines
,”
CIRP Ann.– Manuf. Technol.
,
44
(
2
), pp.
599
609
.
33.
Nojedeh
,
M. V.
,
Habibi
,
M.
, and
Arezoo
,
B.
,
2011
, “
Tool Path Accuracy Enhancement Through Geometrical Error Compensation
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
471
482
.
34.
Gupta
,
K. C.
,
1986
, “
Kinematic Analysis of Manipulators Using the Zero Reference Position Description
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
5
13
.
35.
Mir
,
Y. A.
,
Mayer
,
J. R. R.
, and
Fortin
,
C.
,
2002
, “
Tool Path Error Prediction of a 5-Axis Machine Tool With Geometric Errors
,”
Proc. Inst. Mech. Eng., Part B
,
216
(
5
), pp.
697
712
.
36.
Meggiolaro
,
M. A.
, and
Dubowsky
,
S.
,
2000
, “
An Analytical Method to Eliminate the Redundant Parameters in Robot Calibration
,” 2000
IEEE
International Conference on Robotics and Automation
, San Francisco, CA, Apr. 24–28, pp.
3609
3615
.
37.
Hollerbach
,
C.
,
Wampler
,
J.
, and
Arai
,
T.
,
1995
, “
An Implicit Loop Method for Kinematic Calibration and Its Application to Closed-Chain Mechanisms
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
710
724
.
You do not currently have access to this content.