Extrusion die profile has a significant role on material flow characteristics, product microstructure, die life, and required load. Nowadays, economic requirements and effort to improve and homogenize metallurgical product properties have compelled the researchers to modify the conventional constant angle extrusion dies by employing streamlined die profiles. In the present research work, an optimum plane strain extrusion profile has been presented through implementation of upper bound analysis and Bezier curve in a simulated annealing (SA) algorithm to minimize the process force and its redundant work. The effect of material properties, friction conditions, reduction of area, and cross-sectional ratio on the optimum die profile is considered. The results of finite-element simulation proved that utilizing the optimum curved die instead of the constant angle die is superior regarding the decrease of the maximum required force, 10.5%, and the product inhomogeneity factor (IF), 50%. In addition, based on stress analysis of die/work piece interfaces, it is expected that the die life of optimal curved dies be longer than that of the optimum constant angle dies. Also, it has been demonstrated that the material work hardening characteristics does not have remarkable effect on the optimum curved die profile.

References

References
1.
Hosford
,
W. F.
, and
Caddell
,
R. M.
,
2011
,
Metal Forming: Mechanics and Metallurgy
,
4th ed.
,
Cambridge University Press
,
New York
.
2.
Devenpeck
,
M. L.
, and
Richmond
,
O.
,
1965
, “
Strip-Drawing Experiments With a Sigmoidal Die Profile
,”
ASME J. Manuf. Sci. Eng.
,
87
(
4
), pp.
425
428
.
3.
Sortais
,
H. H. C.
, and
Kobayashi
,
S.
,
1968
, “
An Optimum Die Profile for Axisymmetric Extrusion
,”
Int. J. Mach. Tool Des. Res.
,
8
(
2
), pp.
61
72
.
4.
Lin
,
Z.
,
Juchen
,
X.
,
Xinyun
,
W.
, and
Guoan
,
H.
,
2003
, “
Optimization of Die Profile for Improving Die Life in the Hot Extrusion Process
,”
J. Mater. Process. Technol.
,
142
(
3
), pp.
659
664
.
5.
Richmond
,
O.
, and
Devenpeck
,
M. L.
,
1962
, “
A Die Profile for Maximum Efficiency in Strip Drawing
,” ASME, Proc. 4th US National Congress Applied Mechanics, pp.
1053
1057
.
6.
Srinivasan
,
R.
,
Gunasekera
,
J. S.
,
Gegel
,
H. L.
, and
Doraivelu
,
S. M.
,
1990
, “
Extrusion Through Controlled Strain Rate Dies
,”
J. Mater. Shaping Technol.
,
8
(
2
), pp.
133
141
.
7.
Byon
,
S. M.
, and
Hwang
,
S. M.
,
2003
, “
Die Shape Optimal Design in Cold and Hot Extrusion
,”
J. Mater. Process. Technol.
,
138
(
1–3
), pp.
316
324
.
8.
Avitzur
,
B.
,
1963
, “
Analysis of Wire Drawing and Extrusion Through Conical Dies of Small Cone Angle
,”
ASME J. Manuf. Sci. Eng.
,
85
(
1
), pp.
89
95
.
9.
Bakhshi-Jooybari
,
M.
,
Saboori
,
M.
,
Noorani-Azad
,
M.
, and
Hosseinipour
,
S. J.
,
2007
, “
Combined Upper Bound and Slab Method, Finite Element and Experimental Study of Optimal Die Profile in Extrusion
,”
Mater. Des.
,
28
(
6
), pp.
1812
1818
.
10.
Avitzur
,
B.
,
Narayan
,
C.
, and
Chou
,
Y. T.
,
1982
, “
Upper-Bound Solutions for Flow Through Conical Converging Dies
,”
Int. J. Mach. Tool Des. Res.
,
22
(
3
), pp.
197
214
.
11.
Gordon
,
W. A.
,
Van Tyne
,
C. J.
, and
Moon
,
Y. H.
,
2007
, “
Axisymmetric Extrusion Through Adaptable Dies-Part 1: Flexible Velocity Fields and Power Terms
,”
Int. J. Mech. Sci.
,
49
(
1
), pp.
86
95
.
12.
Gordon
,
W. A.
,
Van Tyne
,
C. J.
, and
Moon
,
Y. H.
,
2007
, “
Axisymmetric Extrusion Through Adaptable Dies-Part 2: Comparison of Velocity Fields
,”
Int. J. Mech. Sci.
,
49
(
1
), pp.
96
103
.
13.
Gordon
,
W. A.
,
Van Tyne
,
C. J.
, and
Moon
,
Y. H.
,
2007
, “
Axisymmetric Extrusion Through Adaptable Dies-Part 3: Minimum Pressure Streamlined Die Shapes
,”
Int. J. Mech. Sci.
,
49
(
1
), pp.
104
115
.
14.
Yang
,
D. Y.
, and
Han
,
C. H.
,
1987
, “
A New Formulation of Generalized Velocity Field for Axisymmetric Forward Extrusion Through Arbitrarily Curved Dies
,”
J. Eng. Ind.
,
109
(
2
), pp.
161
168
.
15.
Ponalagusamy
,
R.
,
Narayanasamy
,
R.
, and
Srinivasan
,
P.
,
2005
, “
Design and Development of Streamlined Extrusion Dies a Bezier Curve Approach
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
375
380
.
16.
Panteghini
,
A.
, and
Genna
,
F.
,
2010
, “
An Engineering Analytical Approach to the Design of Cold Wire Drawing Processes for Strain-Hardening Materials
,”
Int. J. Mater. Form.
,
3
(
4
), pp.
279
289
.
17.
Ghaemi
,
F.
,
Ebrahimi
,
R.
, and
Hosseinifar
,
R.
,
2013
, “
Optimization of Die Profile for Cold Forward Extrusion Using an Improved Slab Method Analysis
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
37
(
2
), pp.
189
202
.
18.
Chakrabarty
,
J.
,
2012
,
Theory of Plasticity
,
Elsevier, Amsterdam
,
The Netherlands
.
19.
Gordon
,
W. A.
,
Van Tyne
,
C. J.
, and
Sriram
,
S.
,
2002
, “
Extrusion Through Spherical Dies—An Upper Bound Analysis
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
92
97
.
20.
Fung
,
Y. C.
,
1994
,
A First Course in Continuum Mechanics: For Physical and Biological Engineers and Scientists
,
3rd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
21.
Ghaemi
,
F.
,
2012
, “
Forward Extrusion Die Design to Consumed Energy Optimization by Incremental Slab Method
,”
Master of Science thesis, Shiraz University
,
Shiraz, Iran
.
22.
Mashali
,
E.
,
2014
, “
Fabrication and Properties Evaluation of Carbon Nano Tube/Aluminium Composite by Combination of Hot Extrusion and Rolling
,”
Master of Science thesis, Shiraz University
,
Shiraz, Iran
.
23.
Blazynski
,
T. Z.
,
1976
,
Metal Forming: Tool Profiles and Flow
,
Macmillan Press, Ltd.
,
London
.
24.
Kazeminezhad
,
M.
,
2008
, “
A Study on the Computation of the Redundant Deformation Factor in Wire Drawing of Austenitic 304 Stainless Steel
,”
J. Mater. Process. Technol.
,
199
(
1
), pp.
230
233
.
25.
Atkins
,
A. G.
, and
Caddell
,
R. M.
,
1968
, “
The Incorporation of Work Hardening and Redundant Work in Rod-Drawing Analyses
,”
Int. J. Mech. Sci.
,
10
(
1
), pp.
15
28
.
26.
Narayanasamy
,
R.
,
Srinivasan
,
P.
, and
Venkatesan
,
R.
,
2003
, “
Computer Aided Design and Manufacture of Streamlined Extrusion Dies
,”
J. Mater. Process. Technol.
,
138
(
1
), pp.
262
264
.
27.
Wifi
,
A. S.
,
Shatla
,
M. N.
, and
Abdel-Hamid
,
A.
,
1998
, “
An Optimum-Curved Die Profile for the Hot Forward Rod Extrusion Process
,”
J. Mater. Process. Technol.
,
73
(
1–3
), pp.
97
107
.
28.
Kirkpatrick
,
S. Y.
,
Gelatt
,
C. J.
, and
Vecchi
,
M.
,
1983
, “
Optimization by Simulated Annealing: Quantitative Studies
,”
Science
,
220
(
4598
), pp.
671
680
.
29.
Rao
,
S. S.
,
2009
,
Engineering Optimization
,
Wiley
,
Hoboken, NJ
.
30.
Fluhrer
,
J.
,
2006
, “
Deform 3D User's Manual Version 6.0
,” Scientific Forming Technologies Corporation, Columbus, OH.
31.
Hosford
,
W. F.
, and
Backofen
,
W. A.
,
1964
, “
Fundamentals of Deformation Processing
,”
9th Sagamore Conference
, Syracuse University Press, Syracuse, New York, p.
259
.
32.
Lepadatu
,
D.
,
Hambli
,
R.
,
Kobi
,
A.
, and
Barreau
,
A.
,
2006
, “
Statistical Investigation of Die Wear in Metal Extrusion Processes
,”
Int. J. Adv. Manuf. Technol.
,
28
(
3–4
), pp.
272
278
.
33.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
34.
Stachurski
,
Z. H.
,
2009
, “
Mechanical Behavior of Materials
,”
Mater. Today
,
12
(
3
), p.
44
.
35.
Solin
,
J.
,
Nagel
,
G.
, and
Mayinger
,
W.
,
2009
, “
Fatigue Curve and Stress Strain Response for Stainless Steel
,”
20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20)
, Espoo, Finland, pp.
1
10
.
You do not currently have access to this content.