Polymer electrolyte membrane (PEM) fuel cell efficiency must be improved in order to become cost competitive with fossil fuel-based technologies. Approaches to increasing cost efficiency include raising fuel cell operating temperature, reducing component cost, and properly controlling fuel cell humidification. We sought to fulfill all three requirements by developing a new low-cost, high-temperature humidification membrane material. Currently, Nafion dominates the membrane humidifier market due to its excellent water transport characteristics, but its high price (∼$1000/m2) and low maximum operating temperature (<90 °C) drive up fuel cell cost. We developed a competing polyethersulfone (PES)–zeolite mixed matrix membrane (MMM) with a porous microstructure. Solvent casting was used to form the initial PES–zeolite films, followed by solid-state foaming to alter the film morphology and create a porous structure. The effects of both zeolite weight loading and foaming duration on membrane permeability were investigated. Membrane measurement results show that both foaming and increased zeolite weight loading enhance membrane water permeability close to levels seen in Nafion. Meanwhile, the membranes satisfy the Department of Energy (DOE) crossover gas requirement for humidification membrane materials.

References

References
1.
James
,
B. D.
,
Moton
,
J. M.
, and
Colella
,
W. G.
,
2014
, “
Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2014 Update
,”
Strategic Analysis, Inc.
, Arlington, VA.
2.
Satyapal
,
S.
,
Mills
,
M.
,
Byham
,
S.
,
Hou
,
Z.
, and
Nahm
,
K. S.
,
2008
, “
Fuel Cell Cost Analysis Summary
,”
International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE)
, Washington, DC.
3.
Ahluwalia
,
R. K.
, and
Wang
,
X.
,
2014
, “
Fuel Cells Systems Analysis
,”
U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Meeting
, Washington, DC, May 9–13, p. 8.
4.
DOE,
2016
, “
Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan
,” U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Washington, DC, Section 3.4, pp. 3–24.
5.
Hughes
,
R.
,
1996
,
Industrial Membrane Separation Technology
,
Springer
, Dordrecht, The Netherlands.
6.
Goswami
,
S.
,
Klaus
,
S.
, and
Benziger
,
J.
,
2008
, “
Wetting and Absorption of Water Drops on Nafion Films
,”
Langmuir
,
24
(
16
), pp.
8627
8633
.
7.
Benjamin
,
T. G.
,
2007
, “
Membrane and MEA Accelerated Stress Test Protocols
,”
U.S. Department of Energy Hydrogen and Fuel Cells Program 2007 Annual Merit Review and Peer Evaluation Meeting
, Arlington, VA, May 15–18, pp. 5–12.
8.
Baker
,
R. W.
,
2004
,
Membrane Technology and Applications
,
Wiley
, Chichester, UK.
9.
Basile
,
A.
, and
Nunes
,
S.
,
2011
,
Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications
,
Woodhead Publishing
, Cambridge, UK.
10.
Bowen
,
T. C.
,
Noble
,
R. D.
, and
Falconer
,
J. L.
,
2004
, “
Fundamentals and Applications of Pervaporation Through Zeolite Membranes
,”
J. Membr. Sci.
,
245
(
1
), pp.
1
33
.
11.
Schult
,
K.
, and
Paul
,
D.
,
1997
, “
Water Sorption and Transport in Blends of Polyethyloxazoline and Polyethersulfone
,”
J. Polym. Sci., Part B: Polym. Phys.
,
35
(
6
), pp.
993
1007
.
12.
Ciobanu
,
G.
,
Carja
,
G.
, and
Ciobanu
,
O.
,
2007
, “
Preparation and Characterization of Polymer–Zeolite Nanocomposite Membranes
,”
Mater. Sci. Eng.
, C,
27
(
5
), pp.
1138
1140
.
13.
Mittal
,
V.
,
2013
,
Polymer Nanocomposite Foams
,
CRC Press
, Boca Raton, FL.
14.
Krause
,
B.
,
Mettinkhof
,
R.
,
Van der Vegt
,
N.
, and
Wessling
,
M.
,
2001
, “
Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon Dioxide
,”
Macromolecules
,
34
(
4
), pp.
874
884
.
15.
Krause
,
B.
,
Boerrigter
,
M.
,
Van der Vegt
,
N.
,
Strathmann
,
H.
, and
Wessling
,
M.
,
2001
, “
Novel Open-Cellular Polysulfone Morphologies Produced With Trace Concentrations of Solvents as Pore Opener
,”
J. Membr. Sci.
,
187
(
1
), pp.
181
192
.
16.
Gargiulo
,
M.
,
Sorrentino
,
L.
, and
Iannace
,
S.
,
2008
, “
High Performance Polymeric Foams
,”
AIP Conf. Proc.
,
1042
, pp.
109
111
.
17.
Sun
,
H.
,
Sur
,
G. S.
, and
Mark
,
J. E.
,
2002
, “
Microcellular Foams From Polyethersulfone and Polyphenylsulfone: Preparation and Mechanical Properties
,”
Eur. Polym. J.
,
38
(
12
), pp.
2373
2381
.
18.
ASTM
,
2013
, “
Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement
,” ASTM International, West Conshohocken, PA, Standard No. ASTM E398-13.
19.
Wiederhorn
,
S.
,
Fields
,
R.
,
Low
,
S.
,
Bahng
,
G.-W.
,
Wehrstedt
,
A.
,
Hahn
,
J.
,
Tomota
,
Y.
,
Miyata
,
T.
,
Lin
,
H.
,
Freeman
,
B. D.
,
Aihara
,
S.
,
Hagihara
,
S.
, and
Tagawa
,
T.
,
2006
, “
Mechanical Properties
,”
Springer Handbook of Materials Measurement Methods
,
H.
Czichos
,
T.
Saito
, and
L.
Smith
, eds.,
Springer Science+Business Media
,
Wurzburg, Germany
, pp.
371
396
.
20.
Siripurapu
,
S.
,
DeSimone
,
J. M.
,
Khan
,
S. A.
, and
Spontak
,
R. J.
,
2005
, “
Controlled Foaming of Polymer Films Through Restricted Surface Diffusion and the Addition of Nanosilica Particles or CO2-Philic Surfactants
,”
Macromolecules
,
38
(
6
), pp.
2271
2280
.
You do not currently have access to this content.