The mechanical ruling process using a diamond tool is an important method for fabrication of low-density diffraction gratings. In mechanical ruling, a deposited film of aluminum or gold is mechanically burnished by the diamond tool to form equally spaced and high-quality grooves. The goal of this work is to evaluate the effects of Al film properties and ruling tool loading conditions on the resultant groove formation. The microstructure of the Al film is first studied using scanning electron microscope (SEM) and X-ray diffraction (XRD). The mechanical properties of the Al film are measured by nano-indentation and scratch tests. Mechanical ruling experiments are then carried out on a 10.5 μm thick Al film under various ruling loads ranging from 20 to 105 g. The groove geometry is investigated, and the tool wear of the diamond tool is inspected after the mechanical ruling tests. Finally, a three-dimensional (3D) thermomechanical-coupled finite-element (FE) model is developed to predict the deformation and temperature fields for the micron-scale groove formation by incorporating the Al film properties and a strain-gradient plasticity for modeling the size effect. Multiruling pass simulations are performed to analyze the groove formation under different loading conditions. Through comparison of simulation results with experimental measurement, this model is demonstrated as a useful numerical tool for modeling the mechanical ruling process using a diamond tool.

References

References
1.
Carl Zeiss
,
2009
, “
Spectral Sensors by Carl Zeiss
,”
Oberkochen
,
Germany
.
2.
Harrison
,
G. R.
, and
Loewen
,
E. G.
,
1976
, “
Ruled Gratings and Wavelength Tables
,”
Opt. Soc. Am.
,
15
(
7
), pp.
1744
1747
.
3.
Harrison
,
G. R.
, and
Thompson
,
S. W.
,
1970
, “
Large Diffraction Gratings Ruled on a Commercial Measuring Machine Controlled Interferometrically
,”
Opt. Soc. Am.
,
60
(
5
), pp.
591
595
.
4.
Carl Zeiss
,
2004
, “
Custom Designed Gratings
,”
Oberkochen
,
Germany
.
5.
Wood
,
R. W.
,
1910
, “
Echelle Grating for the Infrared
,”
Philos. Mag.
,
20
(
118
), pp.
770
778
.
6.
Davies
,
D. A.
, and
Stiff
,
G. M.
,
1969
, “
Diffraction Grating Ruling in Australia
,”
Appl. Optics
,
8
(
7
), p.
1379
.
7.
Verrill
,
J. F.
,
1975
, “
Diffraction Grating Ruling Tool Alignment by Analysis of Traced Groove Profile
,”
J. Phys. E: Sci. Instrum.
,
8
(
6
), pp.
522
525
.
8.
Verrill
,
J. F.
,
1982
, “
The Effects of Diamond Wear on the Production and Properties of Ruled Diffraction Gratings Production and Properties of Ruled
,”
J. Phys.
,
15
, pp.
516
519
.
9.
Harada
,
T.
,
Kita
,
T.
,
Itou
,
M.
,
Taira
,
H.
, and
Mikuni
,
A.
,
1986
, “
Mechanically Ruled Diffraction Gratings for Synchrotron Radiation
,”
Nucl. Instrum. Methods Phys. Res.
,
246
, pp.
272
277
.
10.
Zhang
,
B.
,
Shi
,
G.
,
Shi
,
G.
, and
Li
,
G.
,
2012
, “
Finite Element Simulation and Analysis on Wear of Mechanical Graver for Diffraction Grating
,”
J. Theor. Appl. Inf. Technol.
,
46
(
1
), pp.
289
293
.
11.
Zhang
,
B. Q.
,
Shi
,
G. Q.
, and
Shi
,
G. F.
,
2013
, “
Technical Analysis Method on Diffraction Grating Mechanical Scratching Based on Limited Elements and Cross Experiment
,”
Key Eng. Mater.
,
552
, pp.
124
130
.
12.
Hâkansson
,
G.
,
Hultman
,
L.
,
Sundgren
,
J.-E.
,
Greene
,
J. E.
, and
Münz
,
W.-D.
,
1991
, “
Microstructures of TiN Films Grown by Various Physical Vapour Deposition Techniques
,”
Surf. Coat. Technol.
,
48
(
1
), pp.
51
67
.
13.
Kadlec
,
S.
,
Musil
,
J.
, and
Vyskočil
,
J.
,
1992
, “
Growth and Properties of Hard Coatings Prepared by Physical Vapor Deposition Methods
,”
Surf. Coat. Technol.
,
54–55
, pp.
287
296
.
14.
Jindal
,
P. C.
,
Santhanam
,
A. T.
,
Schleinkofer
,
U.
, and
Shuster
,
A. F.
,
1999
, “
Performance of PVD TiN, TiCN, and TiAlN Coated Cemented Carbide Tools in Turning
,”
Int. J. Refract. Met. Hard Mater.
,
17
(
1
), pp.
163
170
.
15.
Kim
,
H. J.
, and
Joun
,
M. S.
,
2007
, “
Effects of Deposition Temperature and Time on the Surface Characteristics of TiN-Coated High-Speed Steel by Arc Ion Plating
,”
J. Mech. Sci. Technol.
,
21
(
4
), pp.
575
584
.
16.
Choe
,
H. J.
,
Kwon
,
S.-H.
, and
Lee
,
J.-J.
,
2013
, “
Tribological Properties and Thermal Stability of TiAlCN Coatings Deposited by ICP-Assisted Sputtering
,”
Surf. Coat. Technol.
,
228
, pp.
282
285
.
17.
AL-Bukhaiti
,
M. A.
,
Al-hatab
,
K. A.
,
Tillmann
,
W.
,
Hoffmann
,
F.
, and
Sprute
,
T.
,
2014
, “
Tribological and Mechanical Properties of Ti/TiAlN/TiAlCN Nanoscale Multilayer PVD Coatings Deposited on AISI H11 Hot Work Tool Steel
,”
Appl. Surf. Sci.
,
318
, pp.
180
190
.
18.
Rebelo de Figueiredo
,
M.
,
Abad
,
M. D.
,
Harris
,
A. J.
,
Czettl
,
C.
,
Mitterer
,
C.
, and
Hosemann
,
P.
,
2015
, “
Nanoindentation of CVD Al2O3 Hard Coatings at Elevated Temperatures
,”
Thin Solid Films
,
578
, pp.
20
24
.
19.
Oliver
,
C.
, and
Pharr
,
M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
11
), pp.
1564
1583
.
20.
Sokolova
,
E.
,
2004
, “
Simulation of Mechanically Ruled Concave Diffraction Gratings by Use of an Original Geometric Theory
,”
Appl. Opt.
,
43
(
1
), pp.
20
28
.
21.
Thornton
,
J. A.
,
1974
, “
Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings
,”
J. Vac. Sci. Technol.
,
11
(
4
), pp.
666
670
.
22.
Joshi
,
S. S.
, and
Melkote
,
S. N.
,
2004
, “
An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity
,”
AMSE J. Manuf. Sci. Eng.
,
126
(
4
), pp.
679
684
.
23.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.
24.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
601
613
.
25.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.
26.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Experimental Evaluation and Modeling Analysis of Micromilling of Hardened H13 Tool Steels
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041007
.
27.
Gupta
,
N. K.
,
Iqbal
,
M. A.
, and
Sekhon
,
G. S.
,
2006
, “
Experimental and Numerical Studies on the Behavior of Thin Aluminum Plates Subjected to Impact by Blunt- and Hemispherical-Nosed Projectiles
,”
Int. J. Impact Eng.
,
32
(
12
), pp.
1921
1944
.
28.
Sekhon
,
G. S.
, and
Chenot
,
J. L.
,
1993
, “
Numerical Simulation of Continuous Chip Formation During Non-Steady Orthogonal Cutting
,”
Eng. Comput.
,
10
(
1
), pp.
31
48
.
29.
Shen
,
N.
, and
Ding
,
H.
,
2013
, “
Thermo-Mechanical Coupled Analysis of Laser-Assisted Mechanical Micromilling of Difficult-to-Machine Metal Alloys Used for Bio-Implant
,”
Int. J. Precis. Eng. Manuf.
,
14
(
10
), pp.
1677
1685
.
30.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
51014
.
31.
Scientific Forming Technologies Corporation
,
2014
, “
DEFORM V11.0 (PC) Documentation
,”
Scientific Forming Technologies Corporation
,
Columbus, OH
.
32.
Shen
,
N.
,
Samanta
,
A.
,
Ding
,
H.
, and
Cai
,
W. W.
,
2016
, “
Simulating Microstructure Evolution of Battery Tabs During Ultrasonic Welding
,”
J. Manuf. Processes
,
23
, pp.
306
314
.
You do not currently have access to this content.