Advanced ceramic materials like sintered and presintered zirconia are frequently used in biomedical applications, where minimum quantity lubrication (MQL) assisted grinding is required to achieve a good surface finish instead of conventional flood coolant. However, insufficient cooling and wheel clogging are the major problems that exist in the MQL grinding process, which depends upon the type of work piece material and the grinding wheel being used. The present study is to determine the performance of the grinding wheels on presintered zirconia under MQL conditions in terms of grinding forces, specific energy, surface integrity, and wheel wear. Experiments are conducted with two different types of grinding wheels as silicon carbide (SiC) and diamond grinding wheels under the same condition. The results indicated that the diamond wheel provided a better surface finish and reduced tangential force under MQL condition, compared to the conventional SIC wheel. This was due to the reduction of wheel loading in the diamond grinding wheel. The specific energy of diamond grinding wheel was reduced with higher material removal rate compared to the conventional SiC wheel. The ground surfaces generated by the diamond grinding wheel showed fine grinding marks with better surface finish. The percentage of G-ratio calculated for the diamond wheel was higher than the SiC wheel by 77%. This was due to the sliding of the grains and less wheel loading in the diamond wheel. The cost difference between the corresponding wheels was discussed to improve the productivity of the grinding process.

References

References
1.
Denry
,
I.
, and
Kelly
,
J. R.
,
2008
, “
State of the Art of Zirconia for Dental Applications
,”
Dent. Mater.
,
24
(
3
), pp.
299
307
.
2.
Kaya
,
G.
,
2013
, “
Production and Characterization of Self-Colored Dental Zirconia Blocks
,”
Ceram. Int.
,
39
(
1
), pp.
511
517
.
3.
Subramanian
,
K.
,
Ramanath
,
S.
, and
Tricard
,
M.
,
1997
, “
Mechanisms of Material Removal in the Precision Production Grinding of Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
509
519
.
4.
Weinert
,
K.
,
Inasaki
,
I.
,
Sutherland
,
J. W.
, and
Wakabayashi
,
T.
,
2004
, “
Dry Machining and Minimum Quantity Lubrication
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
511
537
.
5.
Inasaki
,
I.
,
1987
, “
Grinding of Hard and Brittle Materials
,”
Ann. CIRP
,
36
(
2
), pp.
463
471
.
6.
Cameron
,
A.
,
Bauer
,
R.
, and
Warkentin
,
A.
,
2010
, “
An Investigation of the Effects of Wheel-Cleaning Parameters in Creep-Feed Grinding
,”
Int. J. Mach. Tools Manuf
,
50
(
1
), pp.
126
130
.
7.
Sinot
,
O.
,
Chevrier
,
P.
, and
Padilla
,
P.
,
2006
, “
Experimental Simulation of the Efficiency of High Speed Grinding Wheel Cleaning
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
170
175
.
8.
Rabiei
,
F.
,
Rahimi
,
A. R.
,
Hadad
,
M. J.
, and
Ashrafijou
,
M.
,
2015
, “
Performance Improvement of Minimum Quantity Lubrication (MQL) Technique in Surface Grinding by Modeling and Optimization
,”
J. Cleaner Prod.
,
86
, pp.
447
460
.
9.
Di Ilio
,
A.
, and
Paoletti
,
A.
,
2000
, “
A Comparison Between Conventional Abrasives and Superabrasives in Grinding of SiC-Aluminium Composites
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
173
184
.
10.
Shih
,
A. J.
,
McSpadden
,
S. B.
,
Morris
,
T. O.
,
Grant
,
M. B.
, and
Yonushonis
,
T. M.
,
2000
, “
High Speed and High Material Removal Rate Grinding of Ceramics Using the Vitreous Bond CBN Wheel
,”
Mach. Sci. Technol.
,
4
(
1
), pp.
43
58
.
11.
Emami
,
M.
,
Sadeghi
,
M. H.
, and
Sarhan
,
A.
,
2013
, “
Minimum Quantity Lubrication in Grinding Process of Zirconia (ZrO2) Engineering Ceramic
,”
Int. J. Min., Metall. Mech. Eng.
,
1
(
3
), pp.
187
190
.http://www.isaet.org/images/extraimages/P513561.pdf
12.
Silva
,
L. R.
,
Corrêa
,
E. C. S.
,
Brandão
,
J. R.
, and
de Ávila
,
R. F.
,
2013
, “
Environmentally Friendly Manufacturing: Behavior Analysis of Minimum Quantity of Lubricant—MQL in Grinding Process
,”
J. Clean. Prod.
, accepted.
13.
Brinksmeier
,
E.
,
Heinzel
,
C.
, and
Wittmann
,
M.
,
1999
, “
Friction, Cooling and Lubrication in Grinding
,”
CIRP Ann. Manuf. Technol.
,
48
(
2
), pp.
581
598
.
14.
Tawakoli
,
T.
,
Hadad
,
M. J.
,
Sadeghi
,
M. H.
,
Daneshi
,
A.
,
Stöckert
,
S.
, and
Rasifard
,
A.
,
2009
, “
An Experimental Investigation of the Effects of Workpiece and Grinding Parameters on Minimum Quantity Lubrication—MQL Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
924
932
.
15.
Marinescu
,
I.
,
2007
,
Handbook of Advanced Ceramic Machining
,
CRC Press
, Boca Raton, FL.
16.
Pusavec
,
F.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production—Part I: Application on Machining Technologies
,”
J. Cleaner Prod.
,
18
(
2
), pp.
174
184
.
17.
de Jesus Oliveira
,
D.
,
Guermandi
,
L. G.
,
Bianchi
,
E. C.
,
Diniz
,
A. E.
,
de Aguiar
,
P. R.
, and
Canarim
,
R. C.
,
2012
, “
Improving Minimum Quantity Lubrication in CBN Grinding Using Compressed Air Wheel Cleaning
,”
J. Mater. Process. Technol.
,
212
(
12
), pp.
2559
2568
.
18.
Subramanian
,
K.
,
Jain
,
A.
,
Vairamuthu
,
R.
, and
Brij Bhushan
,
M.
,
2015
, “
Tribology as an Enabler for Innovation in Surface Generation Processes
,”
ASME
Paper No. IMECE2015-52952.
19.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
,
Industrial Press
,
New York
.
20.
Li
,
K.
, and
Liao
,
T. W.
,
1997
, “
Modelling of Ceramic Grinding Processes—Part I: Number of Cutting Points and Grinding Forces Per Grit
,”
J. Mater. Process. Technol.
,
65
(
1–3
), pp.
1
10
.
21.
Hwang
,
T. W.
, and
Malkin
,
S.
,
1999
, “
Grinding Mechanisms and Energy Balance for Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
623
631
.
You do not currently have access to this content.