Grinding is an important abrasive machining process at the end of many process chains. Understanding energy transformation in grinding is not only important to improve energy efficiency but also crucial for understanding the chip formation process itself. Grinding energy can be studied at the macroscopic or microscopic levels, wherein the entire grinding tool is considered or the phenomena at the single cutting edges are studied. This paper explores existing energy modeling approaches in grinding with particular emphasis on physical models. Models on energy transformation during the ductile grit–workpiece engagement for three regimes —being friction, plowing, and shearing —are explained. In addition to the critical depth of cut (DOC) when chip formation starts, a critical depth when plowing begins is introduced to divide between the different regimes. Selected models for each regime are combined to an integrated grinding energy model that allows researchers to investigate forces and energy during grit engagement.

References

References
1.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
2.
U.S. Energy Information Administration
,
2013
, “
AEO [Consumption.cfm] 2013
,” U.S. Department of Energy, Washington, DC, accessed Apr. 19, 2013, http://www.eia.gov/forecasts/aeo/er/early
3.
Allen
,
D.
,
Bauer
,
D.
,
Bras
,
B.
,
Gutowski
,
T.
,
Murphy
,
C.
,
Piwonka
,
T.
,
Sheng
,
P.
,
Sutherland
,
J.
,
Thurston
,
D.
, and
Wolff
,
E.
,
2002
, “
Environmentally Benign Manufacturing: Trends in Europe, Japan and USA
,”
ASME J. Manuf. Sci. Eng.
,
124
(
4
), pp.
908
920
.
4.
Klocke
,
F.
,
2009
,
Manufacturing Processes 2—Grinding, Honing, Lapping
,
Springer
, Berlin.
5.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2007
,
Handbook of Machining With Grinding Wheels
,
CRC Press
,
Boca Raton, FL
.
6.
Baniszewski
,
B.
,
2005
, “
An Environmental Impact Analysis of Grinding
,”
S.B. Thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/32880
7.
Aurich
,
J.
,
Carrella
,
M.
, and
Steffes
,
M.
,
2012
, “
Evaluation of Abrasive Processes and Machines With Respect to Energy Efficiency
,”
Leveraging Technology for a Sustainable World
,
D. A.
Dornfeld
and
B. S.
Linke
, eds.,
Springer
,
Berlin
, pp.
329
333
.
8.
Ding
,
H.
,
Gou
,
D.
,
Cheng
,
K.
, and
Cui
,
Q.
,
2014
, “
An Investigation on Quantitative Analysis of Energy Consumption and Carbon Footprint in the Grinding Process
,”
Proc. Inst. Mech. Eng.
, Part B,
228
(
6
), pp.
950
956
.
9.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
2003
, “
On the Mechanics of the Grinding Process—Part I: Stochastic Nature of the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1579
1593
.
10.
Linke
,
B. S.
,
2015
, “
Review on Grinding Tool Wear With Regard to Sustainability
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
060801
.
11.
Rowe
,
W. B.
,
2009
,
Principles of Modern Grinding Technology
,
William Andrew
, Norwich, NY.
12.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann.-Manuf. Technol.
,
41
(
2
), pp.
677
688
.
13.
Mladenovic
,
G.
,
Bojanic
,
P.
,
Tanovic
,
Lj.
, and
Klimenko
,
S.
,
2015
, “
Experimental Investigation of Microcutting Mechanisms in Oxide Ceramic CM332 Grinding
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034502
.
14.
Bifano
,
T. G.
, and
Fawcett
,
S. C.
,
1991
, “
Specific Grinding Energy as an In-Process Control Variable for Ductile-Regime Grinding
,”
Precis. Eng.
,
13
(
4
), pp.
256
262
.
15.
Werner
,
G.
,
1971
, “
Kinematik und Mechanik des Schleifprozesses
,” RWTH Aachen University, Aachen, Germany.
16.
Kassen
,
G.
,
1969
, “
Beschreibung der elemantaren Kinematik des Schleifvorgangs
,” RWTH Aachen University, Aachen, Germany.
17.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
,
2nd ed.
,
Industrial Press
, New York.
18.
Jin
,
T.
, and
Stephenson
,
D.
,
2004
, “
Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
259
262
.
19.
Stephenson
,
D. J.
, and
Jin
,
T.
,
2003
, “
Physical Basics in Grinding
,”
First European Conference on Grinding
, Aachen, Germany, Nov. 6–7, pp. 1301–1321.
20.
Linke
,
B.
, and
Overcash
,
M.
,
2012
, “
Life Cycle Analysis of Grinding
,”
Leveraging Technology for a Sustainable World
,
D. A.
Dornfeld
and
B. S.
Linke
, eds.,
Springer
,
Berlin
, pp.
293
298
.
21.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2004
, “
An Environmental Analysis of Machining
,”
ASME
Paper No. IMECE2004-62600.
22.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
, Leuven, Belgium, May 31–June 2, pp. 623–638.http://web.mit.edu/2.813/www/readings/Gutowski-CIRP.pdf
23.
Chen
,
X.
,
Rowe
,
W. B.
,
Allanson
,
D. R.
, and
Mills
,
B.
,
1999
, “
A Grinding Power Model for Selection of Dressing and Grinding Conditions
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
632
637
.
24.
Shaw
,
M. C.
,
1996
, “
Energy Conversion in Cutting and Grinding
,”
CIRP Ann.-Manuf. Technol.
,
45
(
1
), pp.
101
104
.
25.
Zein
,
A.
,
Li
,
W.
,
Herrmann
,
C.
, and
Kara
,
S.
,
2011
, “
Energy Efficiency Measures for the Design and Operation of Machine Tools: An Axiomatic Approach
,”
18th CIRP Conference on Life Cycle Engineering
, Braunschweig, Germany, May 2–4, pp. 274–279.
26.
Hahn
,
R. S.
,
1966
, “
On the Mechanics of the Grinding Process Under Plunge Cut Conditions
,”
ASME J. Eng. Ind.
,
88
(
1
), pp.
72
80
.
27.
Tönshoff
,
H. K.
, and
Denkena
,
B.
,
2013
,
Basics of Cutting and Abrasive Processes
(Lecture Notes in Production Engineering),
Springer
,
Berlin
.
28.
Malkin
,
S.
, and
Joseph
,
N.
,
1975
, “
Minimum Energy in Abrasive Processes
,”
Wear
,
32
(
1
), pp.
15
23
.
29.
Rasim
,
M.
,
Klocke
,
F.
, and
Weiß
,
M.
,
2014
, “
Identifikation der Spanbildungsphasen beim Schleifen
,”
Third International Chemnitz Manufacturing Colloquium (ICMC)
, Chemnitz, Germany, Apr. 8–9, pp. 813–831.
30.
Singh
,
V.
,
Venkateswara Rao
,
P.
, and
Ghosh
,
S.
,
2012
, “
Development of Specific Grinding Energy Model
,”
Int. J. Mach. Tools Manuf.
,
60
, pp.
1
13
.
31.
Li
,
X.
,
Lu
,
Y.
,
Li
,
Q.
,
Li
,
F.
, and
Rong
,
Y.
,
2013
, “
The Study on the Influences of Superabrasive Grain Spatial Orientation for Microcutting Processes Based on Response Surface Methodology
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5
), pp.
1527
1536
.
32.
Lortz
,
W.
,
1975
, “
Schleifscheibentopographie und Spanbildungsmechanismus beim Schleifen
,” RWTH Aachen University, Aachen, Germany.
33.
Rasim
,
M.
,
Mattfeld
,
P.
, and
Klocke
,
F.
,
2015
, “
Analysis of the Grain Shape Influence on the Chip Formation in Grinding
,”
J. Mater. Process. Technol.
,
226
, pp.
60
68
.
34.
Jiang
,
Z.
,
Yin
,
Y.
,
Wang
,
Q.
, and
Chen
,
X.
,
2016
, “
Predictive Modeling of Grinding Force Considering Wheel Deformation for Toric Fewer-Axis Grinding of Large Complex Optical Mirrors
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061008
.
35.
Rasim
,
M.
,
Klocke
,
F.
, and
Mattfeld
,
P.
,
2015
, “
Energy Model for Grinding Processes
,”
Thermo-Energetic Design of Machine Tools
,
K.
Großmann
, ed.,
Springer
,
Cham, Switzerland
, pp.
35
47
.
36.
Malkin
,
S.
, and
Cook
,
N. H.
,
1971
, “
The Wear of Grinding Wheels—Part 1: Attritious Wear
,”
ASME J. Eng. Ind.
,
93
(
4
), pp.
1120
1128
.
37.
Hwang
,
T. W.
, and
Malkin
,
S.
,
1999
, “
Upper Bound Analysis for Specific Energy in Grinding of Ceramics
,”
Wear
,
231
(
2
), pp.
161
171
.
38.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
2nd ed.
,
Wiley
,
New York
.
39.
Shaw
,
M. C.
,
1971
, “
A New Theory of Grinding
,”
International Conference on Science in Industry
, Clayton, Australia, pp.
1
16
.
40.
Merchant
,
E.
,
1945
, “
Mechanics of the Metal-Cutting Process: I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
207
), pp. 267–275.
41.
Kalla
,
D.
,
Twomey
,
J.
, and
Overcash
,
M.
,
2009
, “
MR2 Shearing Process—Unit Process Life Cycle Inventory
,” UPLCI, Wichita State University, Wichita, KS.
42.
Rowe
,
G. W.
,
1979
,
Elements of Metalworking Theory
,
Edward Arnold
,
London
.
43.
Wang
,
H.
,
Subhash
,
G.
, and
Chandra
,
A.
,
2001
, “
Characteristics of Single-Grit Rotating Scratch With a Conical Tool on Pure Titanium
,”
Wear
,
249
(
7
), pp.
566
581
.
44.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2010
,
Manufacturing Engineering and Technology
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
45.
Linke
,
B.
,
2013
, “
Sustainability Indicators for Grinding Applied to Dressing Strategies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054502
.
You do not currently have access to this content.