The production process grinding deals with finishing of hardened workpieces and is one of the last stages of the value-added production chain. Up to this process step, considerable costs and energy have been spent on the workpieces. In order to avoid production rejects, significant safety reserves are calculated according to the present state of the art. The authors introduce two approaches to minimize the safety margin, thus optimizing the process’ economic efficiency. Both control concepts use the feed rate override of the machining operation as regulating variable to eliminate thermal damage of the edge zone. The first control concept is developed to avoid thermal damage in cylindrical plunge grinding by controlling the cutting forces. Therefore, the industrial standard Open Platform Communications Unified Architecture (OPC-UA) is used for the communication between a proportional–integral–derivative (PID) controller and the SINUMERIK grinding machine tool control system. For noncircular workpieces, grinding conditions change over the circumference. Therefore, thermal damage cannot be ruled out at any time during the grinding process. The authors introduce a second novel control approach, which uses a micromagnetic measure that correlates with thermal damage as the main control variable. Hence, the cutting ability of the grinding wheel and thermal damage to the workpiece edge zone is quantified in the process. The result is a control concept for grinding of noncircular workpieces, which opens up fields for major efficiency enhancement. With these two approaches, grinding processes are raised on higher economic level, independently of circular and noncircular workpiece geometries.

References

References
1.
Steffan
,
M.
,
2016
, “
Adaptive Grinding Process (AGriPro)
,”
Jahrbuch Instandhaltungstage 2016
,
A.
Dankl
, and
J.
Isopp
, eds.,
Leykam Buchverlag
,
Wals
, Austria, pp.
16
17
.
2.
Malkin
,
S.
, and
Guo
,
C.
,
2007
, “
Thermal Analysis of Grinding
,”
Ann. CIRP
,
56
(
2
), pp.
760
782
.
3.
Malkin
,
S.
, and
Lenz
,
E.
,
1978
, “
Burning Limit for Surface and Cylindrical Grinding of Steels
,”
Ann. CIRP
,
27
(
1
), pp.
233
236
.
4.
Mayne
,
R. W.
, and
Malkin
,
S.
,
1976
, “
Parameter Optimization of the Steel Grinding Process
,”
ASME J. Eng. Ind.
,
98
(3), pp.
1048
1052
.
5.
Malkin
,
S.
,
Mayne
,
R. W.
, and
Varadarajan
,
G.
,
1976
, “
Optimization of Precision Grinding Processes for Maximum Removal Rate
,”
Fourth North American Metalworking Research Conference
(
NAMRC
), Columbus, OH, May 17–19, pp.
457
463
.
6.
Vits
,
R.
,
1985
, “Technologische Aspekte der Kühlschmierung beim Schleifen,” Ph.D. dissertation, City Print Verlag, Aachen, Germany, pp.
71
73
.
7.
Hecker
,
R. L.
,
Liang
,
S. Y.
, and
Woodruff
,
G. W.
,
2002
, “
Power Feedback Control in Cylindrical Plunge Grinding With an Inner Repetitive Position Control Loop
,”
IEEE International Symposium on Intelligent Control
(
ISIC
), Vancouver, BC, Canada, Oct. 30, pp.
642
647
.
8.
Li
,
G. F.
,
Wang
,
L. S.
, and
Yang
,
L. B.
,
2002
, “
Multi-Parameter Optimization and Control of the Cylindrical Grinding Process
,”
J. Mater. Process. Technol.
,
129
(1–3), pp.
232
236
.
9.
Dong
,
S.
,
Danai
,
K.
,
Malkin
,
S.
, and
Deshmukh
,
A.
, 2004, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 1: Methodology
,”
ASME J. Manuf. Sci. Eng.
,
126
(2), pp.
327
333
.
10.
Dong
,
S.
,
Danai
,
K.
, and
Malkin
,
S.
,
2004
, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 2: Controller Design and Implementation
,”
ASME J. Manuf. Sci. Eng.
,
126
(2), pp.
334
340
.
11.
OPC Foundation
,
2015
, “OPC Unified Architecture Specification, Part 1: Overview and Concepts Release 1.03,” OPC Foundation, Scottsdale, AZ.
12.
Tan
,
V. V.
,
Yoo
,
D. S.
, and
Yi
,
M. J.
,
2009
, “
An Approach to Remote Monitoring and Control Based on OPC Connectivity
,”
IFAC Proc. Vol.
,
42
(
3
), pp.
259
262
.
13.
Wang
,
W.
,
Zhang
,
X.
,
Li
,
Y.
, and
Li
,
Y.
,
2016
, “
Open CNC Machine Tool’s State Data Acquisition and Application Based on OPC Specification
,”
Procedia CIRP
,
56
, pp.
384
388
.
14.
Mahmoud
,
M. S.
,
Sabih
,
M.
, and
Elshafei
,
M.
,
2015
, “
Using OPC Technology to Support the Study of Advanced Process Control
,”
ISA Trans.
,
55
, pp.
155
167
.
15.
Siemens AG
,
2014
, “SINUMERIK Integrate for Engineering Access MyMachine/OPC UA, Inbetriebnahmehandbuch, 6FC5397-1DP40-3AA2,” Siemens AG, Munich, Germany.
16.
MathWorks,
2016
, “OPC Toolbox™ User’s Guide R2016b,” MathWorks, Inc., Natick, MA.
17.
MathWorks,
2016
, “Data Acquisition Toolbox™ User's Guide, R2016b,” MathWorks, Inc., Natick, MA.
18.
National Instruments Corporation,
2014
, “Ordering Information; NI cDAQ-9184; 4-Slot Ethernet NI CompactDAQ Chassis,” National Instruments Corporation, Austin, TX.
19.
Stewarta
,
D. M.
,
Stevensa
,
K. J.
, and
Kaiser
,
A. B.
,
2004
, “
Magnetic Barkhausen Noise Analysis of Stress in Steel
,”
Curr. Appl. Phys.
,
4
(
2–4
), pp.
308
311
.
20.
Gupta
,
H.
,
Zhang
,
M.
, and
Parraka
,
A. P.
,
1997
, “
Barkhausen Effect in Ground Steels
,”
Acta Mater.
,
45
(
5
), pp.
1917
1921
.
21.
Santa-Ahoa
,
S.
,
Vippolaa
,
M.
,
Sorsab
,
A.
,
Latokartano
,
J.
,
Lindgren
,
M.
,
Leiviskä
,
K.
, and
Lepistö
,
T.
,
2012
, “
Development of Barkhausen Noise Calibration Blocks for Reliable Grinding Burn Detection
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
408
416
.
You do not currently have access to this content.