The application of cutting fluid in grinding operations is crucial to control temperature levels and prevent thermal damage to the workpiece. Water-based (emulsions and solutions) coolants are used in grinding operations owing to their excellent cooling capability and relatively lower cost compared to neat oils. However, the cutting fluid efficiency is not only dependent on its type, but also on other parameters including its concentration and flow rate. In this context, this work aims to analyze the influence of the coolant concentration and flow rate on the grinding process. Two different workpiece materials for the production of plastic injection moulds were machined: VP80 and VPATLAS steel grades. Six grinding conditions (combinations of depth of cut values of 5, 15, and 25 μm with coolant concentration of 3% and 8%, respectively) were employed in the former, while two grinding conditions were used for the latter. The output parameter used to assess the influence of coolant concentration and flow rate on the grinding operation focused on the integrity of the workpiece materials (surface roughness and microhardness below the ground surface). The results showed that the surface integrity of VP80 after grinding was more sensitive to depth of cut than to cutting fluid concentration. Furthermore, the highest coolant concentration outperformed the lowest one when grinding under more severe conditions. With regard VPATLAS steel, no influence of the coolant flow rate on surface roughness was observed.

References

References
1.
Shaw
,
M. C.
,
1996
,
Principles of Abrasive Processing
,
Clarendon Press
,
Oxford, UK
, p.
567
.
2.
Rowe
,
W. B.
,
2010
,
Modern Grinding Techniques
,
Wiley, Hoboken, NJ; Scrivener Publishing LLC
, Salem, MA, p.
49
.
3.
Malkin
,
S.
, and
Guo
,
C.
,
2007
, “
Thermal Analysis of Grinding
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
760
782
.
4.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2006
,
Handbook of Machining With Grinding Wheels
,
CRC Press
, Boca Raton, FL.
5.
Debnath
,
S.
,
Reddy
,
M. M.
, and
Yi
,
Q. S.
,
2014
, “
Environmental Friendly Cutting Fluids and Cooling Techniques in Machining: A Review
,”
J. Cleaner Prod.
,
83
, pp.
33
47
.
6.
Da Silva
,
L. R.
,
Bianchi
,
E. C.
,
Fusse
,
R. Y.
,
Catai
,
R. E.
,
França
,
T. V.
, and
Aguiar
,
P. R.
,
2007
, “
Analysis of Surface Integrity for Minimum Quantity Lubricant—MQL in Grinding
,”
Int. J. Mach. Tools Manuf.
,
47
(2), pp.
412
418
.
7.
Sanchez
,
J. A.
,
Pombo
,
I.
,
Alberdi
,
R.
,
Izquierdo
,
B.
,
Ortega
,
N.
,
Plaza
,
S.
, and
Martinez-Toledano
,
J.
,
2010
, “
Machining Evaluation of a Hybrid MQL-CO2 Grinding Technology
,”
J. Cleaner Prod.
,
18
(18), pp.
1840
1849
.
8.
Hadad
,
M. J.
,
Tawakoli
,
T.
,
Sadeghi
,
M. H.
, and
Sadeghi
,
B.
,
2012
, “
Temperature and Energy Partition in Minimum Quantity Lubrication-MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
10
17
.
9.
Dongkun
,
Z.
,
Changhe
,
L.
,
Dongzhou
,
J.
,
Yanbin
,
Z.
, and
Xiaowei
,
Z.
,
2015
, “
Specific Grinding Energy and Surface Roughness of Nanoparticle Jet Minimum Quantity Lubrication in Grinding
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
570
581
.
10.
Hadad
,
M.
,
2015
, “
An Experimental Investigation of the Effects of Machining Parameters on Environmentally Friendly Grinding Process
,”
J. Cleaner Prod.
,
108
(Part A), pp.
217
231
.
11.
Zhou
,
N.
,
Peng
,
R. L.
, and
Pettersson
,
R.
,
2016
, “
Surface Integrity of 2304 Duplex Stainless Steel After Different Grinding Operations
,”
J. Mater. Process. Technol.
,
229
, pp.
294
304
.
12.
Ezugwu
,
E. O.
, and
Hew
,
V. H.
,
1994
, “
Effect of Coolant Concentrations When Machining Carbon (En 8) and Ni–Cr–Mo (En 24) Steels With Coated Carbide Tools
,”
Third International Conference on the Behaviour of Metals in Machining
, Warwick, UK, Nov., pp.
10
22
.
13.
Singh
,
K.
,
Kumar
,
P.
, and
Goyal
,
K.
,
2014
, “
To Study the Effect of Input Parameters on Surface Roughness of Cylindrical Grinding of Heat Treated AISI 4140 Steel
,”
Am. J. Mech. Eng.
,
2
(
3
), pp.
58
64
.
14.
Klocke
,
F.
,
2009
,
Manufacturing Processes 2 – Grinding, Honing, Lapping
,
Springer
,
Berlin
, p.
433
.
15.
Tawakoli
,
T.
,
Hadad
,
M. J.
, and
Sadeghi
,
M. H.
,
2010
, “
Influence of Oil Mist Parameters on Minimum Quantity Lubrication—MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
521
531
.
16.
Villares Metals
, 2009, “
Plastic Mould Steel VP80
,” Villares Metals, Sumaré, SP, Brazil, accessed Feb. 27, 2015, http://www.villaresmetals.us/english/files/FTI_VP80_Ingles.pdf
17.
Malkin
,
S.
,
1989
,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
American Society of Civil Engineering
, Dearborn, MI.
18.
Saad
,
A.
,
Bauer
,
R.
, and
Andrew Warkentin
,
A.
,
2010
, “
Investigation of Single-Point Dressing Overlap Ratio and Diamond-Roll Dressing Interference Angle on Surface Roughness in Grinding
,”
Trans. Can. Soc. Mech. Eng.
,
34
(
2
), pp. 295–308.http://www.tcsme.org/Papers/Vol34/Vol34No2Paper8.pdf
19.
Malkin
,
S.
,
2012
, “
Grinding: 'Practical Art' or 'Applied Science'?
,”
Saint-Gobain Grinding Research Symposium
, Northboro, MA, Nov. 8, p.
53
.
20.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology - Theory and Applications of Machining With Abrasives
,
2nd ed.
,
Industrial Press
,
New York
, p.
372
.
21.
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Olajire
,
K. A.
,
2004
, “
The Effect of Coolant Concentration on the Machinability of Nickel-Base, Nimonic C-263, Alloy
,”
Tribol. Letters
,
16
(4), pp. 311–316.
22.
Brinksmeier
,
E.
,
Garbrecht
,
M.
,
Heinzel
,
C.
,
Koch
,
T.
, and
Eckebrecht
,
J.
,
2009
, “
Current Approaches in Design and Supply of Metalworking Fluids
,”
Tribol. Trans.
,
59
(5), pp. 591–601.
You do not currently have access to this content.