In the literature, cemented carbides are described as hard and brittle materials. The material removal mechanisms in grinding of brittle materials, such as cemented carbides, significantly differ from the material removal mechanisms of ductile materials [13]. The material removal mechanisms in grinding of ductile materials are comparatively well investigated in comparison to the material removal mechanisms in grinding of brittle materials. In the existing literature, it has been shown that the material removal mechanisms in grinding of cemented carbides can be ductile or brittle. The present material removal mechanisms are dependent on the thermomechanical stress collective, which acts on the surface zone of the cemented carbides. In this paper, the material removal mechanisms in grinding of cemented carbides are discussed fundamentally. In order to analyze the occurring material removal mechanisms in grinding of cemented carbides, single grain cutting tests were carried out. Subsequent to the tests, the surface zone of the cemented carbide has been analyzed in detail. Therefore, scanning electron micrographs have been made to analyze the workpiece surface to identify the transition from predominantly ductile to predominantly brittle material behavior. Furthermore, focused ion beam (FIB) preparation, which has minimum invasive influence on the subsurface, was applied in order to get an insight into the surface zone. The FIB lamellae have been analyzed with transmission electron microscopy (TEM) to get a better understanding of the impact of material removal mechanisms on the surface zone. The drawn conclusions contribute to an improved process understanding in grinding of cemented carbides.

References

References
1.
Marshall
,
D. B.
,
Evans
,
A. G.
,
Yakub
,
B. T. K.
,
Tien
,
J. W.
, and
Kino
,
G. S.
,
1983
,”
The Nature of Machining Damage in Brittle Materials
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
385
(
1789
), pp.
461
475
.
2.
Saljé
,
E.
, and
Möhlen
,
H.
,
1987
, “
Prozeßoptimierung Beim Schleifen Keramischer Werkstoffe
,”
Ind. Diamanten Rundsch.
,
21
(
4
), pp.
243
247
.
3.
Klocke
,
F.
, Ed.,
2009
,
Manufacturing Processes
,
Springer
,
Berlin
.
4.
Denkena
,
B.
,
Köhler
,
J.
, and
Schindler
,
A.
,
2014
, “
Behavior of the Magnetic Abrasive Tool for Cutting Edge Preparation of Cemented Carbide End Mills
,”
Prod. Eng. Res. Dev.
,
8
(
5
), pp.
627
633
.
5.
Jia
,
K.
,
Fischer
,
T. E.
, and
Gallois
,
B.
,
1998
, “
Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites
,”
Nanostruct. Mater.
,
10
(
5
), pp.
875
891
.
6.
Yang
,
J.
,
Odén
,
M.
,
Johansson-Jõesaar
,
M. P.
, and
Llanes
,
L.
,
2014
, “
Grinding Effects on Surface Integrity and Mechanical Strength of WC-Co Cemented Carbides
,”
Proc. CIRP
,
13
, pp.
257
263
.
7.
Antoniadis
,
A.
,
Vidakis
,
N.
, and
Bilalis
,
N.
,
2002
, “
Fatigue Fracture Investigation of Cemented Carbide Tools in Gear Hobbing—Part 1: FEM Modeling of Fly Hobbing and Computational Interpretation of Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
124
(
4
), pp.
784
791
.
8.
Ema
,
S.
,
1992
, “
Cutting Performance of a Cemented Carbide Drill With Three Cutting Edges
,”
ASME J. Manuf. Sci. Eng.
,
114
(
1
), pp.
116
119
.
9.
Kim
,
D.
,
Beal
,
A.
, and
Kwon
,
P.
,
2016
,”
Effect of Tool Wear on Hole Quality in Drilling of Carbon Fiber Reinforced Plastic–Titanium Alloy Stacks Using Tungsten Carbide and Polycrystalline Diamond Tools
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
31006
.
10.
Denkena
,
B.
,
Friemuth
,
T.
, and
Spenger
,
C.
,
2003
, “
Modeling and Process Design for Different Grinding Operations of Carbide Tools
,”
Prod. Eng. Res. Dev.
,
10
(
1
), pp.
15
18
.
11.
Friemuth
,
T.
,
2002
,”
Herstellung Spanender Werkzeuge
,” Habilitation, Institut für Fertigungstechnik und Werkzeugmaschinen, Universität Hannover, Hannover, Germany.
12.
Uhlmann
,
E.
, and
Schröer
,
N.
,
2016
,”
Werkzeugschleifen mit Hybridschleifscheiben: Vergleich Unterschiedlicher Schleifscheibenbindungsspezifikationen Beim Nutentiefschliff von Hartmetall
,”
wt Werkstattstech. Online
,
106
(
3
), pp.
181
186
.
13.
von Brevern
,
P.
,
1996
, “
Untersuchungen zum Tiefschleifen von Hartmetall Unter Besonderer Berücksichtigung von Schleiföl als Kühlschmierstoff
,”
Fortschrittberichte VDI
, Vol.
2
,
VDI-Verlag
, Düsseldorf, Germany.
14.
Schwarz
,
M.
,
2006
, “
High Quality im Präzisionsschleifen Erfordert Hoch Spezialisierte Kühlschmierstoffe
,” Diamond Business,
1
, pp.
1
45
.
15.
Eyrisch
,
T.
,
2009
, “
Optimierung der Herstellung von Vollhartmetallwerkzeugen: Strategie zur Vermeidung von Oberflächenschädigungen
,” Dissertation, Fertigungstechnik und Betriebsorganisation, TU Kaiserslautern, Kaiserslautern, Germany.
16.
Hegeman
,
J.
,
de Hosson
,
J.
, and
de With
,
G.
,
2001
, “
Grinding of WC–Co Hardmetals
,”
Wear
,
248
(
1–2
), pp.
187
196
.
17.
Hübert
,
C.
,
2012
, “
Schleifen von Hartmetall- und Vollkeramik-Schaftfräsern
,” Dissertation, Produktionstechnisches Zentrum Berlin, TU Berlin, Berlin.
18.
Maldaner
,
J.
,
2008
,”
Verbesserung des Zerspanverhaltens von Werkzeugen mit Hartmetall-Schneidelementen Durch Variation der Schleifbearbeitung
,” Dissertation, TU Kaiserslautern, Kassel, Germany.
19.
Ren
,
Y. H.
,
Zhang
,
B.
, and
Zhou
,
Z. X.
,
2009
, “
Specific Energy in Grinding of Tungsten Carbides of Various Grain Sizes
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
299
302
.
20.
Yin
,
L.
,
Spowage
,
A. C.
,
Ramesh
,
K.
,
Huang
,
H.
,
Pickering
,
J. P.
, and
Vancoille
,
E.
,
2004
, “
Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides
,”
Int. J. Mach. Tools Manuf.
,
44
(
5
), pp.
533
543
.
21.
Zelwer
,
O.
, and
Malkin
,
S.
,
1980
, “
Grinding of WC-Co Cemented Carbides
,”
J. Eng. Ind.
,
102
(
3
), pp.
209
220
.
22.
Abdullah
,
A.
,
Pak
,
A.
,
Farahi
,
M.
, and
Barzegari
,
M.
,
2007
, “
Profile Wear of Resin-Bonded Nickel-Coated Diamond Wheel and Roughness in Creep-Feed Grinding of Cemented Tungsten Carbide
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
165
168
.
23.
Badger
,
J.
,
2015
, “
Grinding of Sub-Micron-Grade Carbide: Contact and Wear Mechanisms, Loading, Conditioning, Scrubbing and Resin-Bond Degradation
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
341
344
.
24.
Luo
,
S. Y.
,
Liu
,
Y. C.
,
Chou
,
C. C.
, and
Chen
,
T. C.
,
2001
, “
Performance of Powder Filled Resin-Bonded Diamond Wheels in the Zvertical Dry Grinding of Tungsten Carbide
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
329
336
.
25.
Zhan
,
Y. J.
,
Li
,
Y.
,
Huang
,
H.
, and
Xu
,
X. P.
,
2009
, “
Wear of Brazed Diamond Wheel in Grinding of Cemented Carbide
,”
Key Eng. Mater.
,
416
, pp.
198
204
.
26.
Exner
,
H. E.
,
1979
, “
Physical and Chemical Nature of Cemented Carbides
,”
Int. Met. Rev.
,
24
(
1
), pp.
149
173
.
27.
van den Berg
,
H.
,
2007
, “
Hardmetals: Trends in Development and Application
,”
Powder Metall.
,
50
(
1
), pp.
7
10
.
28.
Klocke
,
F.
,
Wirtz
,
C.
,
Mueller
,
S.
, and
Mattfeld
,
P.
,
2016
, “
Analysis of the Material Behavior of Cemented Carbides (WC-Co) in Grinding by Single Grain Cutting Tests
,”
Proc. CIRP
,
46
, pp.
209
213
.
29.
Wirtz
,
C.
,
Vits
,
F.
,
Mattfeld
,
P.
, and
Klocke
,
F.
,
2016
, “
Schleifen von WC-Co-Hartmetallen: Methodik zur Systematischen Analyse des Zerspanverhaltens
,”
wt Werkstattstech. Online
,
106
(
6
), pp.
374
379
.
30.
Arif
,
M.
,
Xinquan
,
Z.
,
Rahman
,
M.
, and
Kumar
,
S.
,
2013
, “
A Predictive Model of the Critical Undeformed Chip Thickness for Ductile–Brittle Transition in Nano-Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
114
122
.
31.
Zhang
,
X.
,
Arif
,
M.
,
Liu
,
K.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2013
, “
A Model to Predict the Critical Undeformed Chip Thickness in Vibration-Assisted Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
69
, pp.
57
66
.
32.
Tang
,
F.
, and
Zhang
,
L.
,
2014
, “
Subsurface Nanocracking in Monocrystalline Si (001) Induced by Nanoscratching
,”
Eng. Fract. Mech.
,
124–125
, pp.
262
271
.
33.
Meng
,
B.
,
Zhang
,
Y.
, and
Zhang
,
F.
,
2016
, “
Material Removal Mechanism of 6H-SiC Studied by Nano-Scratching With Berkovich Indenter
,”
Appl. Phys. A
,
122
(
3
), p.
235
.
34.
Pennycook
,
S. J.
, and
Nellist
,
P. D.
, Eds.,
2011
,
Scanning Transmission Electron Microscopy: Imaging and Analysis
,
Springer
,
New York
.
You do not currently have access to this content.