Multi-axis electrical discharging machining (EDM) is the main manufacture method for shrouded blisks, which are key components of aero and rocket engines. Involving both linear and rotational axes, a feeding path for machining a narrow and twisted channel consists of a large number of G-code lines. Accelerations and decelerations at junctions, which connect two neighboring G-code lines, can significantly reduce the machining efficiency. In this paper, a new simplification of feeding paths in roughing EDM for shrouded blisks is proposed in order to reduce the number of junctions on a feeding path. However, deviating from the original feeding path, a simplified feeding path can bring over contour errors which can cause geometrical errors of workpieces. Contour error can thus serve as a criterion for simplifying the original path. Eight vertices of a hexahedron, which contains the electrode, are used to represent all points inside and on an electrode. Forward kinematics of a six-axis EDM machine is used to calculate the contour errors of the eight vertices when the electrode feeds along a simplified path. A simplified feeding path can be found provided that the contour error constraint is respected. Machining tests show that the use of a simplified feeding path in roughing EDM machining can reduce the average total machining time by 26.5% without significant impact on surface roughness and white layer thickness.

References

References
1.
Harada
,
H.
,
1985
, “
Performance Characteristics of Shrouded and Unshrouded Impellers of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
528
533
.
2.
Yoon
,
S.
,
Curtis
,
E.
,
Denton
,
J.
, and
Longley
,
J.
,
2013
, “
The Effect of Clearance on Shrouded and Unshrouded Turbines at Two Levels of Reaction
,”
ASME J. Turbomach.
,
136
(
2
), p.
021013
.
3.
Jing
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
,
Li
,
X.
, and
Liu
,
Z.
,
2011
, “
Tool Path Planning in Finish-Milling Process for Integrally-Shrouded Impeller Channels With Rings
,”
International Conference on Electronic and Mechanical Engineering and Information Technology
(
EMEIT
), Harbin, China, Aug. 12–14, pp.
1635
1638
.
4.
Chen
,
K.-H.
,
2011
, “
Investigation of Tool Orientation for Milling Blade of Impeller in Five-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
52
(
1–4
), pp.
235
244
.
5.
Zhan
,
H.-J.
,
Zhao
,
W.-S.
, and
Wang
,
G.
,
2000
, “
Manufacturing Turbine Blisks
,”
Aircr. Eng. Aerosp. Technol.
,
72
(
3
), pp.
247
252
.
6.
Li
,
G.
,
Zhao
,
W.-S.
,
Wang
,
Z.-L.
, and
Wu
,
X.
,
2007
, “
A Special Cad/Cam Software for Electro-Discharge Machining of Shrouded Turbine Blisks
,”
J. Shanghai Univ. (English Ed.)
,
11
(
1
), pp.
74
78
.
7.
Liu
,
X.
,
Kang
,
X.
,
Xi
,
X.
,
Liang
,
W.
, and
Zhao
,
W.
,
2013
, “
Electrode Feed Path Planning for Multi-Axis EDM of Integral Shrouded Impeller
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1697
1706
.
8.
Fujiki
,
M.
,
Ni
,
J.
, and
Shih
,
A. J.
,
2011
, “
Tool Path Planning for Near-Dry EDM Milling With Lead Angle on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051005
.
9.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B. M.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Annals Manuf. Technol.
,
54
(
2
), pp.
64
87
.https://nebraska.pure.elsevier.com/en/publications/advancing-edm-through-fundamental-insight-into-the-process
10.
Cetin
,
S.
,
Okada
,
A.
, and
Uno
,
Y.
,
2003
, “
Electrode Jump Motion in Linear Motor Equipped Die-Sinking EDM
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
809
815
.
11.
Fan
,
W.
,
Lee
,
C.-H.
, and
Chen
,
J.-H.
,
2015
, “
A Realtime Curvature-Smooth Interpolation Scheme and Motion Planning for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
27
46
.
12.
Huo
,
F.
, and
Poo
,
A.-N.
,
2013
, “
Precision Contouring Control of Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
64
(
1–4
), pp.
319
333
.
13.
Xi
,
X.-C.
,
Poo
,
A.-N.
, and
Hong
,
G.-S.
,
2009
, “
Improving Contouring Accuracy by Tuning Gains for a Bi-Axial CNC Machine
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
395
406
.
14.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review—Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1235
1256
.
15.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review—Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
.
16.
Dong
,
J.
,
Wang
,
T.
,
Li
,
B.
, and
Ding
,
Y.
,
2014
, “
Smooth Feedrate Planning for Continuous Short Line Tool Path With Contour Error Constraint
,”
Int. J. Mach. Tools Manuf.
,
76
, pp.
1
12
.
17.
Sun
,
Y.
,
Zhao
,
Y.
,
Bao
,
Y.
, and
Guo
,
D.
,
2015
, “
A Smooth Curve Evolution Approach to the Feedrate Planning on Five-Axis Toolpath With Geometric and Kinematic Constraints
,”
Int. J Mach. Tools Manuf.
,
97
, pp.
86
97
.
18.
Zhu
,
L.
,
Zhao
,
H.
, and
Ding
,
H.
,
2013
, “
Real-Time Contouring Error Estimation for Multi-Axis Motion Systems Using the Second-Order Approximation
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
75
80
.
19.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part I: Modeling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031006
.
20.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
, A Mathematical Introduction to Robotic Manipulation,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.