Bending complex curved steel plates for constructing ship hull has long been a challenge in shipbuilding industry. This paper presents a novel incremental bending process to obtain complicated curved steel plates by a series of sequential and layered punches. Taking advantage of this process, the blank plate that is fixed and held by a flexible supporting system can incrementally be bent into the target shape by a press tool along a planned tool path step by step and layer by layer. Acting as a “lower die,” the flexible supporting system can provide flexible and multifunctional supports for the work piece during the forming process, whose four general motion modes are demonstrated in this paper. Meanwhile, the procedures of tool path planning and forming layering are also explained in detail. In addition, aiming at different motion modes of the flexible supporting system, two springback compensation methods are given. Furthermore, according to the forming principle presented in this paper, an original incremental prototype equipment was designed and manufactured, which is mainly composed of a three-axis computer numerical control (CNC) machine, a flexible supporting system, and a three-dimensional (3D) scanning feedback system. A series of forming experiments focusing on a gradual curvature shape were carried out using this prototype to investigate the feasibility and validity of this forming process.

References

References
1.
Shin
,
J. G.
,
Ryu
,
C. H.
,
Lee
,
J. H.
, and
Kim
,
W. D.
,
2003
, “
User-Friendly, Advanced Line Heating Automation for Accurate Plate Forming
,”
J. Ship Prod.
,
19
(
1
), pp.
8
15
.http://www.ingentaconnect.com/content/sname/jsp/2003/00000019/00000001/art00002#expand/collapse
2.
Kuo
,
H. C.
, and
Wu
,
L. J.
,
2001
, “
Prediction of Deformation to Thin Ship Panels for Different Heat Sources
,”
J. Ship Prod.
,
17
(
2
), pp.
52
61
.http://www.ingentaconnect.com/content/sname/jsp/2001/00000017/00000002/art00002
3.
Li
,
M. Z.
,
Cai
,
Z. Y.
,
Sui
,
Z.
, and
Yan
,
Q. G.
,
2002
, “
Multi-Point Forming Technology for Sheet Metal
,”
J. Mater. Process Technol.
,
129
(
1–3
), pp.
333
338
.
4.
Liu
,
C. U.
,
Li
,
M. Z.
, and
Fu
,
W. Z.
,
2008
, “
Principles and Apparatus of Multi-Point Forming for Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11
), pp.
1227
1233
.
5.
Peng
,
H.
,
Li
,
M.
,
Liu
,
C.
, and
Cao
,
J.
,
2013
, “
Study of Multi-Point Forming for Polycarbonate Sheet
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9
), pp.
2811
2817
.
6.
Shim
,
D. S.
,
Yang
,
D. Y.
,
Kim
,
K. H.
,
Han
,
M. S.
, and
Chung
,
S. W.
,
2009
, “
Numerical and Experimental Investigation Into Cold Incremental Rolling of Doubly Curved Plates for Process Design of a New LARS (Line Array Roll Set) Rolling Process
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
239
242
.
7.
Shim
,
D. S.
,
Yang
,
D. Y.
,
Kim
,
K. H.
,
Chung
,
S. W.
, and
Han
,
M. S.
,
2010
, “
Investigation Into Forming Sequences for the Incremental Forming of Doubly Curved Plates Using the Line Array Roll Set (LARS) Process
,”
Int. J. Mach. Tool Manuf.
,
50
(
2
), pp.
214
218
.
8.
Wang
,
D.
,
Li
,
M.
, and
Cai
,
Z.
,
2014
, “
Research on Forming Precision of Flexible Rolling Method For Three-Dimensional Surface Parts Through Simulation
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9
), pp.
1717
1727
.
9.
Cai
,
Z. Y.
,
Guan
,
D. B.
,
Wang
,
M.
, and
Li
,
M. Z.
,
2014
, “
A Novel Continuous Roll Forming Process of Sheet Metal Based on Bended Rolls
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9
), pp.
1807
1814
.
10.
Cai
,
Z. Y.
,
Li
,
L. L.
,
Wang
,
M.
, and
Li
,
M. Z.
,
2014
, “
Process Design and Longitudinal Deformation Prediction in Continuous Sheet Metal Roll Forming for Three-Dimensional Surface
,”
Int. J. Precis. Eng. Manuf.
,
15
(
9
), pp.
1889
1895
.
11.
Amar
,
K. B.
,
Ricardo
,
A. D. S.
,
Giuseppe
,
I.
, and
Valentin
,
O.
,
2017
, “
Single Point Incremental Forming: An Assessment of the Progress and Technology Trends From 2005 to 2015
,”
J. Manuf. Process.
,
27
, pp.
37
62
.
12.
Jeswiet
,
J.
,
Adams
,
D.
,
Doolan
,
M.
,
McAnulty
,
T.
, and
Gupta
,
P.
,
2015
, “
Single Point and Asymmetric Incremental Forming
,”
Adv. Manuf.
,
3
(
4
), pp.
253
262
.
13.
Shakir
,
G.
,
Hengan
,
O.
, and
Graham
,
M.
,
2016
, “
Review on the Influence of Process Parameters in Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
479
499
.
14.
Attanasio
,
A.
,
Ceretti
,
E.
,
Giardini
,
C.
, and
Mazzoni
,
L.
,
2007
, “
Asymmetric Two Points Incremental Forming: Improving Surface Quality and Geometric Accuracy by Tool Path Optimization
,”
J. Mater. Process. Technol.
,
197
(1–3), pp. 59–67.
15.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2007
, “
Laser Assisted Incremental Forming: Formability and Accuracy Improvement
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
273
276
.
16.
Taleb Araghi
,
B.
,
Göttmann
,
A.
,
Bergweiler
,
G.
,
Saeed-Akbari
,
A.
,
Bültmann
,
J.
,
Zettler
,
J.
,
Bambach
,
M.
, and
Hirt
,
G.
,
2011
, “
Investigation on Incremental Sheet Forming Combined With Laser Heating and Stretch Forming for the Production of Lightweight Structures
,”
Key Eng. Mater.
,
473
, pp.
919
928
.
17.
Fan
,
G.
,
Gao
,
L.
,
Hussain
,
G.
, and
Wu
,
Z.
,
2008
, “
Electric Hot Incremental Forming: A Novel Technique
,”
Int. J. Mach. Tools Manuf.
48
(
15
), pp.
1688
1692
.
18.
Araghi
,
B. T.
,
Manco
,
G. L.
,
Bambach
,
M.
, and
Hirt
,
G.
,
2009
, “
Investigation Into a New Hybrid Forming Process: Incremental Sheet Forming Combined With Stretch Forming
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
225
228
.
19.
Echrif
,
S. B. M.
, and
Hrairi
,
M.
,
2011
, “
Research and Progress in Incremental Sheet Forming Processes
,”
Mater. Manuf. Process.
,
26
(
11
), pp.
1404
1414
.
20.
Emmens
,
W. C.
,
Sebastiani
,
G.
, and
van den Boogaard
,
A. H.
,
2010
, “
The Technology of Incremental Sheet Forming—A Brief Review of the History
,”
J. Mater. Process Technol.
,
210
(
8
), pp.
981
997
.
21.
Meier
,
H.
,
Smukala
,
V.
,
Dewald
,
O.
, and
Zhang
,
J.
,
2007
, “
Two Point Incremental Forming With Two Moving Forming Tools
,”
Key Eng. Mater.
,
344
, pp.
599
605
.
22.
Malhotra
,
R.
,
Cao
,
J.
,
Ren
,
F.
,
Kiridena
,
V.
,
Xia
,
C.
, and
Reddy
,
N.
,
2011
, “
Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061019
.
23.
Meier
,
H.
,
Buff
,
B.
,
Laurischkat
,
R.
, and
Smukala
,
V.
,
2009
, “
Increasing the Part Accuracy in Dieless Robot-Based Incremental Sheet Metal Forming
,”
CIRP Ann-Manuf. Techn.
,
56
(
1
), pp.
233
238
.
24.
Asgar
,
J.
,
Lingam
,
R.
, and
Reddy
,
N. V.
,
2013
, “
Tool Path Influence on Electric Pulse Aided Deformation During Incremental Sheet Metal Forming
,”
Ninth International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
, Melbourne, Australia, Jan. 6–10, pp.
840
843
.http://raiith.iith.ac.in/1926/
25.
Bostjan
,
J.
,
Karl
,
K.
, and
Mihael
,
J.
,
2006
, “
Water Jetting Technology: An Alternative in Incremental Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
31
(
1–2
), pp.
18
23
.
26.
Shuguo
,
W.
,
Lingping
,
X.
,
Kai
,
H.
,
Jiuhua
,
L.
,
Wei
,
F.
, and
Du
,
R.
,
2015
, “
Experimental Study on Manufacturing Metal Bellows Forming by Water Jet Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
129
133
.
27.
Jiuhua
,
L.
,
Kai
,
H.
,
Shuguo
,
W.
,
Xiaobing
,
D.
, and
Ruxu
,
D.
,
2014
, “
Modeling and Experimental Validation for Truncated Cone Parts Forming Based on Water Jet Incremental Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9–12
), pp.
1691
1699
.
28.
Amar
,
K. B.
,
Bert
,
L.
, and
Joost
,
R. D.
,
2014
, “
Tool Path Generation Framework for Accurate Manufacture of Complex 3D Sheet Metal Parts Using Single Point Incremental Forming
,”
Comput. Ind.
,
65
(
4
), pp.
563
584
.
29.
Amar
,
K. B.
,
Johan
,
V.
,
Bert
,
L.
, and
Joost
,
R. D.
,
2013
, “
Tool Path Compensation Strategies for Single Point Incremental Sheet Forming Using Multivariate Adaptive Regression Splines
,”
Comput. Aided Des.
,
45
(
3
), pp.
575
590
.
30.
de Sena
,
J. I. V.
,
Guzmán
,
C. F.
,
Duchêne
,
L.
,
Habraken
,
A. M.
,
Behera
,
A. K.
,
Duflou
,
J.
,
Valente
,
R. A. F.
, and
Alves de Sousa
,
R. J.
,
2016
, “
Simulation of a Two-Slope Pyramid Made by SPIF Using an Adaptive Remeshing Method With Solid-Shell Finite Element
,”
Int. J. Mater. Form
,
9
(
3
), pp.
383
394
.
31.
Amar
,
K. B.
,
Bin
,
L.
, and
Hengan
,
O.
,
2016
, “
Characterization of Shape and Dimensional Accuracy of Incrementally Formed Titanium Sheet Parts With Intermediate Curvatures Between Two Feature Types
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1099
1111
.
32.
Joost
,
R. D.
,
Amar
,
K. B.
,
Hans
,
V.
, and
Liciane
,
S. B.
,
2013
, “
Manufacture of Accurate Titanium Cranio-Facial Implants With High Forming Angle Using Single Point Incremental Forming
,”
Key Eng. Mater.
,
549
, pp.
223
230
.
33.
Junchao
,
L.
,
Junjian
,
S.
, and
Bin
,
W.
,
2013
, “
A Multipass Incremental Sheet Forming Strategy of a Car Taillight Bracket
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9
), pp.
2229
2236
.
34.
Xiaobing
,
D.
,
Kai
,
H.
,
Wei
,
L.
,
Qiyang
,
Z.
, and
Ruxu
,
D.
,
2017
, “
Incremental Bending of Three-Dimensional Free Form Metal Plates Using Minimum Energy Principle and Model-Less Control
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071009
.
35.
Amar
,
K. B.
,
2013
, “
Shape Feature Taxonomy Development for Toolpath Optimisation in Incremental Sheet Forming
,”
Ph.D. thesis
, KU Leuven, Leuven, Belgium.https://lirias.kuleuven.be/handle/123456789/422489
36.
El Salhi
,
S.
,
Coenen
,
F.
,
Dixon
,
C.
, and
Khan
,
M. S.
,
2015
, “
Predicting “Springback” Using 3D Surface Representation Techniques: A Case Study in Sheet Metal Forming
,”
Expert Syst. Appl.
,
42
(
1
), pp.
79
93
.
37.
Amar
,
K. B.
, and
Hengan
,
O.
,
2016
, “
Effect of Stress Relieving Heat Treatment on Surface Topography and Dimensional Accuracy of Incrementally Formed Grade 1 Titanium Sheet Parts
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3233
3248
.
You do not currently have access to this content.