Conductive viscoelastic polymer composites (CVPCs) consisting of conductive fillers in viscoelastic polymer matrices find numerous applications in emerging technologies such as flexible electronics, energy storage, and biochemical sensing. Additive manufacturing methods at micro- and mesoscales provide exciting opportunities toward realizing the unique capabilities of such material systems. In this paper, we study the direct-ink-writing (DIW) process of CVPCs consisting of electrically conductive additives in a poly(ethylene oxide) (PEO) matrix. We particularly focus on the deposition mechanisms of the DIW process and the influence of these mechanisms on the printed structure geometry, morphology, and functional properties. To this end, we utilized a novel practical approach of modeling the ink extrusion through the nozzles considering the non-Newtonian viscous effects while capturing the viscoelastic extensional flow (drawing) effects through the variation of the nozzle exit pressure. We concluded that inks containing higher amounts of high molecular weight (HMW) PEO exhibit drawing type deposition at high printing speeds and low inlet pressures enabling thinner, higher aspect ratio structures with ideal three-dimensional stacking. Under this deposition mechanism, the electrical conductivity of the anodic structures decreased with increasing printing speed, indicating the effect of the drawing mechanism on the printed structure morphology.

References

References
1.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
,
Kolesky
,
D. B.
,
Wood
,
R. J.
, and
Lewis
,
J. A.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
2.
Guo
,
S.-Z.
,
Yang
,
X.
,
Heuzey
,
M.-C.
, and
Therriault
,
D.
,
2015
, “
3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor
,”
Nanoscale
,
7
(
15
), pp.
6451
6456
.
3.
Alemán
,
B.
,
Reguero
,
V.
,
Mas
,
B.
, and
Vilatela
,
J. J.
,
2015
, “
Strong Carbon Nanotube Fibers by Drawing Inspiration From Polymer Fiber Spinning
,”
ACS Nano
,
9
(
7
), pp.
7392
7398
.
4.
Huang
,
S.
,
Zhao
,
C.
,
Pan
,
W.
,
Cui
,
Y.
, and
Wu
,
H.
,
2015
, “
Direct Writing of Half-Meter Long CNT Based Fiber for Flexible Electronics
,”
Nano Lett.
,
15
(
3
), pp.
1609
1614
.
5.
Potts
,
J. R.
,
Dreyer
,
D. R.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
,
2011
, “
Graphene-Based Polymer Nanocomposites
,”
Polymer
,
52
(
1
), pp.
5
25
.
6.
Li
,
W.
,
Li
,
F.
,
Li
,
H.
,
Su
,
M.
,
Gao
,
M.
,
Li
,
Y.
,
Su
,
D.
,
Zhang
,
X.
, and
Song
,
Y.
,
2016
, “
Flexible Circuits and Soft Actuators by Printing Assembly of Graphene
,”
ACS Appl. Mater. Interfaces
,
8
(
19
), pp.
12369
12376
.
7.
Fassler
,
A.
, and
Majidi
,
C.
,
2015
, “
Liquid-Phase Metal Inclusions for a Conductive Polymer Composite
,”
Adv. Mater.
,
27
(
11
), pp.
1928
1932
.
8.
Wang
,
Y.
,
Gozen
,
A.
,
Chen
,
L.
, and
Zhong
,
W.-H.
,
2017
, “
Gum-Like Nanocomposites as Conformable, Conductive, and Adhesive Electrode Matrix for Energy Storage Devices
,”
Adv. Energy Mater.
,
7
(
6
), p.
1601767
.
9.
Wang
,
Y.
,
Li
,
B.
,
Ji
,
J.
,
Eyler
,
A.
, and
Zhong
,
W.-H.
,
2013
, “
A Gum-Like Electrolyte: Safety of a Solid, Performance of a Liquid
,”
Adv. Energy Mater.
,
3
(
12
), pp.
1557
1562
.
10.
Hu
,
J.
,
Jiang
,
Y.
,
Cui
,
S.
,
Duan
,
Y.
,
Liu
,
T.
,
Guo
,
H.
,
Lin
,
L.
,
Lin
,
Y.
,
Zheng
,
J.
,
Amine
,
K.
, and
Pan
,
F.
,
2016
, “
3D-Printed Cathodes of LiMn1−x Fex PO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-Ion Battery
,”
Adv. Energy Mater.
,
6
(18), p.
1600856
.
11.
Sun
,
K.
,
Wei
,
T.-S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures.
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
12.
Decker
,
B. Y.
, and
Gan
,
Y. X.
,
2015
, “
Electric Field-Assisted Additive Manufacturing Polyaniline Based Composites for Thermoelectric Energy Conversion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
024504
.
13.
Majesté
,
J.-C.
,
2012
, “
Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges
,”
Rheology and Processing of Polymer Nanocomposites
, S. Thomas, R. Muller, and J. Abraham, eds., Wiley, Hoboken, NJ, pp. 69–134.
14.
Lewis
,
J.
, and
Gratson
,
G.
,
2004
, “
Direct Writing in Three Dimensions
,”
Mater. Today
,
7
(
7–8
), pp.
32
39
.
15.
Hon
,
K. K. B.
,
Li
,
L.
, and
Hutchings
,
I. M.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
601
620
.
16.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
17.
Truby
,
R. L.
, and
Lewis
,
J. A.
,
2016
, “
Printing Soft Matter in Three Dimensions
,”
Nature
,
540
(
7633
), pp.
371
378
.
18.
Berry
,
S. M.
,
Pabba
,
S.
,
Cohn
,
R. W.
, and
Keynton
,
R. S.
,
2012
, “
Direct-Write Drawing of Carbon Nanotube/Polymer Composite Microfibers
,”
J. Nanomater.
,
2012
, p. 690301.
19.
Berry
,
S. M.
,
Harfenist
,
S. A.
,
Cohn
,
R. W.
, and
Keynton
,
R. S.
,
2006
, “
Characterization of Micromanipulator-Controlled Dry Spinning of Micro- and Sub-Microscale Polymer Fibers
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
1825
1832
.
20.
Harfenist
,
S. A.
,
Cambron
,
S. D.
,
Nelson
,
E. W.
,
Berry
,
S. M.
,
Isham
,
A. W.
,
Crain
,
M. M.
,
Walsh
,
K. M.
,
Keynton
,
R. S.
, and
Cohn
,
R. W.
,
2004
, “
Direct Drawing of Suspended Filamentary Micro- and Nanostructures From Liquid Polymers
,”
Nano Lett.
,
4
(
10
), pp.
1931
1937
.
21.
Berry
,
S. M.
,
Pabba
,
S.
,
Crest
,
J.
,
Cambron
,
S. D.
,
McKinley
,
G. H.
,
Cohn
,
R. W.
, and
Keynton
,
R. S.
,
2011
, “
Characterization and Modeling of Direct-Write Fabrication of Microscale Polymer Fibers
,”
Polymer
,
52
(
7
), pp.
1654
1661
.
22.
Zheng
,
G.
,
Yu
,
Z.
,
Zhuang
,
M.
,
Wei
,
W.
,
Zhao
,
Y.
,
Zheng
,
J.
, and
Sun
,
D.
,
2014
, “
Electrohydrodynamic Direct-Writing of Three-Dimensional Multi-Loop Nanofibrous Coils
,”
Appl. Phys. A Mater. Sci. Process.
,
116
(
1
), pp.
171
177
.
23.
Zheng
,
G.
,
Sun
,
L.
,
Wang
,
X.
,
Wei
,
J.
,
Xu
,
L.
,
Liu
,
Y.
,
Zheng
,
J.
, and
Liu
,
J.
,
2016
, “
Electrohydrodynamic Direct-Writing Microfiber Patterns Under Stretching
,”
Appl. Phys. A
,
122
(
2
), p.
112
.
24.
Cai
,
Y.
,
Li
,
J.
,
Poh
,
C. K.
,
Tan
,
H. C.
,
San Thian
,
E.
,
Hsi Fuh
,
J. Y.
,
Sun
,
J.
,
Tay
,
B. Y.
, and
Wang
,
W.
,
2013
, “
Collagen Grafted 3D Polycaprolactone Scaffolds for Enhanced Cartilage Regeneration
,”
J. Mater. Chem. B
,
1
(
43
), pp.
5971
5976
.
25.
Li
,
X.
,
Li
,
Z.
,
Wang
,
L.
,
Ma
,
G.
,
Meng
,
F.
,
Pritchard
,
R. H.
,
Gill
,
E. L.
,
Liu
,
Y.
, and
Huang
,
Y. Y. S.
,
2016
, “
Low-Voltage Continuous Electrospinning Patterning
,”
ACS Appl. Mater. Interfaces
,
8
(
47
), pp.
32120
32131
.
26.
Collino
,
R. R.
,
Ray
,
T. R.
,
Fleming
,
R. C.
,
Cornell
,
J. D.
,
Compton
,
B. G.
, and
Begley
,
M. R.
,
2016
, “
Deposition of Ordered Two-Phase Materials Using Microfluidic Print Nozzles With Acoustic Focusing
,”
Extreme Mech. Lett.
,
8
, pp.
96
106
.
27.
Barnes
,
H. A.
, and
Walters
,
K.
,
1989
,
An Introduction to Rheology
, Elsevier, Amsterdam, The Netherlands.
28.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
1999
,
Non-Newtonian Flow: Fundamentals and Engineering Applications
, Butterworth-Heinemann, Woburn, MA.
29.
Bruneaux
,
J.
,
Therriault
,
D.
, and
Heuzey
,
M.-C.
,
2008
, “
Micro-Extrusion of Organic Inks for Direct-Write Assembly
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115020
.
30.
Chen
,
X. B.
, and
Ke
,
H.
,
2006
, “
Effects of Fluid Properties on Dispensing Processes for Electronics Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
,
29
(
2
), pp.
75
82
.
31.
Chen
,
X. B.
,
Li
,
M. G.
, and
Ke
,
H.
,
2008
, “
Modeling of the Flow Rate in the Dispensing-Based Process for Fabricating Tissue Scaffolds
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021003
.
32.
Chung
,
J. H. Y.
,
Naficy
,
S.
,
Yue
,
Z.
,
Kapsa
,
R.
,
Quigley
,
A.
,
Moulton
,
S. E.
, and
Wallace
,
G. G.
,
2013
, “
Bio-Ink Properties and Printability for Extrusion Printing Living Cells
,”
Biomater. Sci.
,
1
(
7
), pp.
763
773
.
33.
Noman Hasan
,
M.
,
Vatani
,
M.
,
Chandy
,
A.
, and
Choi
,
J.-W.
,
2016
, “
Experimental and Numerical Analysis of Filament Front Deformation for Direct-Print
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011003
.
34.
Xue
,
Z.
,
He
,
D.
, and
Xie
,
X.
,
2015
, “
Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
38
), pp.
19218
19253
.
35.
Wang
,
Y.
,
Zhong
,
W.-H.
,
Schiff
,
T.
,
Eyler
,
A.
, and
Li
,
B.
,
2015
, “
A Particle-Controlled, High-Performance, Gum-Like Electrolyte for Safe and Flexible Energy Storage Devices
,”
Adv. Energy Mater.
,
5
(
2
), p.
1400463
.
36.
Pittenger
,
B.
,
Erina
,
N.
, and
Su
,
C.
,
2009
, “
Quantitative Mechanical Property Mapping at the Nanoscale With PeakForce QNM
,” Bruker Instruments, Beijing, China, Report No.
128
.http://www.microscopy-analysis.com/editorials/editorial-listings/quantitative-mechanical-property-mapping-nanoscale-peakforce-qnm
37.
Cruz
,
R. D. C.
,
Martins
,
R. J.
,
Cardoso
,
M. J. E. D. M.
, and
Barcia
,
O. E.
,
2009
, “
Volumetric Study of Aqueous Solutions of Polyethylene Glycol as a Function of the Polymer Molar Mass in the Temperature Range 283.15 to 313.15 K and 0.1 MPa
,”
J. Solution Chem.
,
38
(
8
), pp.
957
981
.
38.
Li
,
B.
,
Clark
,
P. A.
, and
Church
,
K. H.
,
2007
, “
Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
,”
ASME
Paper No. MSEC2007-31037.
39.
Clasen
,
C.
,
Phillips
,
P. M.
,
Palangetic
,
L.
, and
Vermant
,
J.
,
2012
, “
Dispensing of Rheologically Complex Fluids: The Map of Misery
,”
AIChE J.
,
58
(
10
), pp.
3242
3255
.
40.
Dangtungee
,
R.
, and
Supaphol
,
P.
,
2008
, “
Melt Rheology and Extrudate Swell of Titanium (IV) Oxide Nanoparticle-Filled Isotactic Polypropylene: Effects of Content and Surface Characteristics
,”
Polym. Test.
,
27
(
8
), pp.
951
956
.
41.
Semenov
,
S.
,
Trybala
,
A.
,
Rubio
,
R. G.
,
Kovalchuk
,
N.
,
Starov
,
V.
, and
Velarde
,
M. G.
,
2014
, “
Simultaneous Spreading and Evaporation: Recent Developments
,”
Adv. Colloid Interface Sci.
,
206
, pp.
382
398
.
42.
Osterbur
,
L.
,
2013
, “
3D Printing of Hyaluronic Acid Scaffolds for Tissue Engineering Applications
,”
M.S. thesis
, University of Illinois at Urbana-Champaign, Champaign, IL.https://www.ideals.illinois.edu/handle/2142/44207
43.
Compton
,
B. G.
, and
Lewis
,
J. A.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(34), pp. 5930–5935.
44.
Park
,
J. H.
, and
Joo
,
Y. L.
,
2014
, “
Tailoring Nanorod Alignment in a Polymer Matrix by Elongational Flow Under Confinement: Simulation, Experiments, and Surface Enhanced Raman Scattering Application
,”
Soft Matter
,
10
(
19
), pp.
3494
3505
.
45.
Okamoto
,
M.
,
Nam
,
P.
,
Maiti
,
P.
,
Kptaka
,
T.
,
Hasegawa
,
N.
, and
Usuki
,
A.
,
2001
, “
A House of Cards Structure in Polypropylene/Clay Nanocomposites Under Eleongational Flow
,”
Nano Lett.
,
1
(
6
), pp.
295
298
.
46.
Arashiro
,
E. Y.
, and
Demarquette
,
N. R.
,
1999
, “
Use of the Pendant Drop Method to Measure Interfacial Tension Between Molten Polymers
,”
Mater. Res.
,
2
(
1
), pp.
23
32
.
You do not currently have access to this content.