Ultrasonic welding is a well-known technique for joining thermoplastics and has recently been introduced to joining carbon fiber-reinforced composites (CFRC). However, suitable models for predicting joint performance have not yet been established. At present, most failure models for bonded composites are built based on uniform adhesive joints, which assume constant joint properties. Nevertheless, the joint properties of ultrasonic spot welds for CFRC are variable, which depend on the input welding parameters. In this paper, the effect of welding energy, which is the most important welding parameter, on the joint properties is investigated. Then, a surface-based cohesive performance model based on mode-II (in-plane) shear loading is developed to predict the joint performance, wherein the critical fracture parameters in the model are described via the functions of welding energy. After comparing the simulated results with experiments, the model is proven feasible in predicting the joint properties of the ultrasonic spot welds under shear loading condition, and hence, a mix-mode cohesive-zone model is practical to predict the joint performance under any loading conditions with the predicted fracture parameters.

References

References
1.
Korkolis
,
P. Y.
,
Li
,
J.
,
Carlson
,
B.
, and
Chu
,
E.
,
2015
, “
Special Issue: Forming and Joining of Lightweight and Multimaterial Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
050201
.
2.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
3.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051013
.
4.
Fong
,
K. S.
,
Atsushi
,
D.
,
Jen
,
T. M.
, and
Chua
,
B. W.
,
2015
, “
Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051004
.
5.
Ali
,
M. Y.
, and
Pan
,
J.
,
2015
, “
Residual Stresses Due to Rigid Cylinder Indentation and Rolling at a Very High Rolling Load
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051005
.
6.
Nassar
,
S. A.
,
Wu
,
Z.
,
Moustafa
,
K.
, and
Tzelepis
,
D.
,
2015
, “
Effect of Adhesive Nanoparticle Enrichment on Static Load Transfer Capacity and Failure Mode of Bonded Steel–Magnesium Single Lap Joints
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051024
.
7.
Kuttolamadom
,
A. M.
,
Laine Mears
,
M. L.
, and
Kurfess
,
T. R.
,
2015
, “
The Correlation of the Volumetric Wear Rate of Turning Tool Inserts With Carbide Grain Sizes
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011015
.
8.
Ng
,
W. C.
,
1996
, “
Study of Vibration and Viscoelastic Heating of Thermoplastic Parts Subjected to Ultrasonic Excitation
,” Ph.D. dissertation, The Ohio State University, Columbus, OH.
9.
Li
,
X.
,
Ling
,
S. F.
, and
Sun
,
Z.
,
2004
, “
Heating Mechanism in Ultrasonic Welding of Thermoplastics
,”
Int. J. Joining Mater.
,
16
(
2
), pp.
37
42
.
10.
Zhang
,
Z.
,
Wang
,
X.
,
Luo
,
Y.
,
Zhang
,
Z.
, and
Wang
,
L.
,
2010
, “
Study on Heating Process of Ultrasonic Welding for Thermoplastics
,”
J. Thermoplast. Compos. Mater.
,
23
(
5
), pp.
647
664
.
11.
Levy
,
A.
,
Corre
,
S. L.
,
Poitou
,
A.
, and
Soccard
,
E.
,
2010
, “
Ultrasonic Welding. Simulation of the Flow at the Interface
,”
Int. J. Mater. Form.
,
3
(
1
), pp.
623
626
.
12.
Xi
,
L.
,
Banu
,
M.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abel
,
J.
,
2016
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011008
.
13.
Cavalli
,
M. N.
,
Thouless
,
M. D.
, and
Yang
,
Q. D.
,
2005
, “
Cohesive-Zone Modelling of the Deformation and Fracture of Spot-Welded Joints
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
10
), pp.
861
874
.
14.
Li
,
S.
,
Thouless
,
M. D.
,
Waas
,
A. M.
,
Schroeder
,
J. A.
, and
Zavattieri
,
P. D.
,
2005
, “
Use of a Cohesive-Zone Model to Analyze the Fracture of a Fiber-Reinforced Polymer-Matrix Composites
,”
Compos. Sci. Technol.
,
65
(
3–4
), pp.
537
549
.
15.
Marzi
,
S.
,
Rauh
,
A.
, and
Hinterhölzl
,
R. M.
,
2014
, “
Fracture Mechanical Investigations and Cohesive Zone Failure Modeling on Automotive Composites
,”
Compos. Struct.
,
111
, pp.
324
331
.
16.
Shahverdi
,
M.
, and
Vassilopoulos
,
A. P.
,
2015
, “
Mixed-Mode Fatigue and Fracture Behavior of Adhesively-Bonded Composite Joints
,”
Fatigue and Fracture of Adhesively-Bonded Composite Joints
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
187
223
.
17.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.
18.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding—An FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1143
1150
.
19.
Levy
,
A.
,
Poitou
,
A.
,
Corre
,
S. L.
, and
Soccard
,
E.
,
2008
, “
Ultrasonic Welding of Thermoplastic Composites, Modeling of the Process
,”
Int. J. Mater. Form.
,
1
(
Suppl. 1
), pp.
887
890
.
20.
Levy
,
A.
,
Corre
,
S. L.
,
Poitou
,
A.
, and
Soccard
,
E.
,
2011
, “
Ultrasonic Welding of Thermoplastic Composites: Modeling of the Process Using Time Homogenization
,”
J. Multiscale Comput. Eng.
,
9
(
1
), pp.
53
72
.
21.
Levy
,
A.
,
Corre
,
S. L.
, and
Villegas
,
I. F.
,
2014
, “
Modeling of the Heating Phenomena in Ultrasonic Welding of the Thermoplastic Composites With Flat Energy Directors
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1361
1371
.
22.
Francfort
,
G. A.
, and
Suquet
,
P. M.
,
1986
, “
Homogenization and Mechanical Dissipation in Thermoviscoelasticity
,”
Arch. Ration. Mech. Anal.
,
96
(
3
), pp.
265
293
.
23.
Kafkalidis
,
M. S.
,
Thouless
,
M. D.
,
Yang
,
Q. D.
, and
Ward
,
S. M.
,
2000
, “
Deformation and Fracture of Adhesive Layers Constrained by Plastically-Deforming Adherends
,”
J. Adhes. Sci. Technol.
,
14
(
13
), pp.
1593
1607
.
24.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2009
, “
Model I Fracture of Adhesive Joints Using Tailored Cohesive Zone Models
,”
Int. J. Fract.
,
157
, pp.
193
204
.
25.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
2001
, “
Elastic–Plastic Mode-II Fracture of Adhesive Joints
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3251
3262
.
26.
Yang
,
Q. D.
, and
Thouless
,
M. D.
,
2001
, “
Mixed-Mode Fracture Analyses of Plastically-Deforming Adhesive Joints
,”
Int. J. Fract.
,
110
(
2
), pp.
175
187
.
27.
Wang
,
K.
,
Shriver
,
D.
,
Banu
,
M.
,
Hu
,
S. J.
,
Fan
,
H. T.
,
Xiao
,
G.
, and
Arinez
,
J.
, 2017, “
Characterization of Weld Attributes in Ultrasonic Welding of Short Carbon-Fiber Reinforced Thermoplastic Composites
,”
J. Manuf. Process
(submitted).
28.
Xia
,
M.
,
Hamada
,
H.
, and
Maekawa
,
Z.
,
1995
, “
Flexural Stiffness of Injection Molded Glass Fiber Reinforced Thermoplastics
,”
Int. Polym. Process.
,
10
(
1
), pp.
74
81
.
29.
Bay
,
R. S.
, and
Tucker
,
C. L.
, III
,
1992
, “
Stereological Measurement and Error Estimates for Three-Dimensional Fiber Orientation
,”
Polymer. Eng. Sci.
,
32
(
4
), pp.
240
253
.
30.
Halpin
,
J. C.
,
1969
, “
Environmental Factors in Composite Materials Design
,” U.S. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Greene County, OH, Report No. AFML-TR-67-423.
31.
Tsai
,
S. W.
, and
Hahn
,
H. T.
,
1980
,
Introduction to Composite Materials
,
Technomic Publishing Company
,
Lancaster, PA
.
32.
ASTM
,
2014
, “
Stand Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D5868-01
.
33.
Dassault Systèmes
,
2012
, “
ABAQUS Theory Manual (v.6.13)
,” Dassault Systèmes, Providence, RI.
You do not currently have access to this content.