Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.

References

References
1.
Jones
,
J. J.
, and
Mears
,
L.
,
2011
, “
Constant Current Density Compression Behavior of 304 Stainless Steel and Ti-6Al-4V During Electrically-Assisted Forming
,”
ASME
Paper No. MSEC2011-50287.
2.
Salandro
,
W.
,
Jones
,
J.
,
Bunget
,
C.
,
Mears
,
L.
, and
Roth
,
J.
,
2014
,
Electrically Assisted Forming: Modeling and Control
,
Springer
, Basel, Switzerland.
3.
Jones
,
J. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2012
, “
Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
034504
.
4.
Bunget
,
C.
,
Salandro
,
W.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2010
, “
Energy-Based Modeling of an Electrically-Assisted Forging Process
,” 38th North American Manufacturing Research Conference (NAMRC), Kingston, ON, Canada, May 26–28, pp.
647
654
.
5.
Hong
,
S.
,
Jeong
,
Y.
,
Chowdhury
,
M. N.
,
Chun
,
D.
,
Kim
,
M.
, and
Han
,
H. N.
,
2015
, “
Feasibility of Electrically Assisted Progressive Forging of Aluminum 6061-T6 Alloy
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
277
280
.
6.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
.
7.
Li
,
X.
,
Wang
,
F.
,
Li
,
X.
,
Zhu
,
J.
, and
Tang
,
G.
,
2016
, “
Mg–3Al–1Zn Alloy Strips Processed by Electroplastic Differential Speed Rolling
,”
Mater. Sci. Technol.
,
33
(
2
), pp.
215
219
.
8.
Conrad
,
H.
,
1989
, “
A Study Into the Mechanism(s) for the Electroplastic Effect in Metals and Its Application to Metalworking, Processing and Fatigue
,” U.S. Army Research Office, Durham, NC.
9.
Tang
,
G.
,
Zhang
,
J.
,
Zheng
,
M.
,
Zhang
,
J.
,
Fang
,
W.
, and
Li
,
Q.
,
2000
, “
Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L
,”
Mater. Sci. Eng. A
,
281
(
1
), pp.
263
267
.
10.
Tang
,
G.
,
Zhang
,
J.
,
Yan
,
Y.
,
Zhou
,
H.
, and
Fang
,
W.
,
2003
, “
The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire
,”
J. Mater. Process. Technol.
,
137
(
1
), pp.
96
99
.
11.
Kozlov
,
A.
,
Mordyuk
,
B.
, and
Chernyashevsky
,
A.
,
1995
, “
On the Additivity of Acoustoplastic and Electroplastic Effects
,”
Mater. Sci. Eng. A
,
190
(
1
), pp.
75
79
.
12.
Egea
,
A. J. S.
,
Rojas
,
H. A. G.
,
Celentano
,
D. J.
, and
Peiró
,
J. J.
,
2016
, “
Mechanical and Metallurgical Changes on 308L Wires Drawn by Electropulses
,”
Mater. Des.
,
90
, pp.
1159
1169
.
13.
Zhang
,
J.
,
Tang
,
G.
,
Yan
,
Y.
, and
Fang
,
W.
,
2002
, “
Effect of Current Pulses on the Drawing Stress and Properties of Cr17Ni6Mn3 and 4J42 Alloys in the Cold-Drawing Process
,”
J. Mater. Process. Technol.
,
120
(
1–3
), pp.
13
16
.
14.
Ulutan
,
D.
,
Pleta
,
A.
, and
Mears
,
L.
,
2015
, “
Electrically-Assisted Machining of Titanium Alloy Ti-6Al-4V and Nickel-Based Alloy IN-738: An Investigation
,”
ASME
Paper No. MSEC2015-9465.
15.
Jones
,
E.
,
Jones
,
J. J.
, and
Mears
,
L.
,
2013
, “
Empirical Modeling of Direct Electric Current Effect on Machining Cutting Force
,”
ASME
Paper No. MSEC2013-1229.
16.
Egea
,
A. J. S.
,
Rojas
,
H. A. G.
,
Montaña
,
C. A. M.
, and
Echeverri
,
V. K.
,
2015
, “
Effect of Electroplastic Cutting on the Manufacturing Process and Surface Properties
,”
J. Mater. Process. Technol.
,
222
, pp.
327
334
.
17.
Hameed
,
S.
,
Rojas
,
H. A. G.
,
Egea
,
A. J. S.
, and
Alberro
,
A. N.
,
2016
, “
Electroplastic Cutting Influence on Power Consumption During Drilling Process
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
1835
1841
.
18.
Zhang
,
D.
,
To
,
S.
,
Zhu
,
Y. H.
,
Wang
,
H.
, and
Tang
,
G. Y.
,
2012
, “
Static Electropulsing-Induced Microstructural Changes and Their Effect on the Ultra-Precision Machining of Cold-Rolled AZ91 Alloy
,”
Metall. Mater. Trans. A
,
43
(
4
), pp.
1341
1346
.
19.
Ji
,
R.
,
Liu
,
Y.
,
Zhang
,
Y.
,
Dong
,
X.
,
Chen
,
Z.
, and
Cai
,
B.
,
2011
, “
Experimental Research on Machining Characteristics of SiC Ceramic With End Electric Discharge Milling
,”
J. Mech. Sci. Technol.
,
25
(
6
), pp.
1535
1542
.
20.
Ruszkiewicz
,
B. J.
, and
Mears
,
L.
,
2016
, “
Electrically Assisted Compression of Tungsten Carbide and Its Implications for Electrically Assisted Machining
,”
ASME
Paper No. MSEC2016-8554.
21.
Langer
,
J.
,
Hoffmann
,
M. J.
, and
Guillon
,
O.
,
2009
, “
Direct Comparison Between Hot Pressing and Electric Field-Assisted Sintering of Submicron Alumina
,”
Acta Mater.
,
57
(
18
), pp.
5454
5465
.
22.
Grasso
,
S.
,
Sakka
,
Y.
, and
Maizza
,
G.
,
2009
, “
Electric Current Activated/Assisted Sintering (ECAS): A Review of Patents 1906–2008
,”
Sci. Technol. Adv. Mater.
,
10
(
5
), p.
053001
.
23.
Munir
,
Z. A.
,
Quach
,
D. V.
, and
Ohyanagi
,
M.
,
2011
, “
Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process
,”
J. Am. Ceram. Soc.
,
94
(
1
), pp.
1
19
.
24.
Skovron
,
J.
,
Ruszkiewicz
,
B. J.
,
Mears
,
L.
, and
Abke
,
T.
,
2016
, “
Effect of Electrical Augmentation on the Joining of Al6063-T5 Using Flow Drill Screws
,”
ASME
Paper No. MSEC2016-8578.
25.
Ferrando
,
W. A.
,
2008
, “
The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals
,” Naval Surface Warfare Center, Bethesda, MD, Report No.
NSWCCD-61-TR-2008/13
.http://www.dtic.mil/dtic/tr/fulltext/u2/a487963.pdf
26.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2015
, “
Electrically Assisted Friction Stir Welding for Joining Al 6061 to TRIP 780 Steel
,”
J. Mater. Process. Technol.
,
219
, pp.
112
123
.
27.
Santos
,
T. G.
,
Miranda
,
R.
, and
Vilaca
,
P.
,
2014
, “
Friction Stir Welding Assisted by Electrical Joule Effect
,”
J. Mater. Process. Technol.
,
214
(
10
), pp.
2127
2133
.
28.
Santos
,
T. G.
,
Lopes
,
N.
,
Machado
,
M.
,
Vilaca
,
P.
, and
Miranda
,
R.
,
2015
, “
Surface Reinforcement of AA5083-H111 by Friction Stir Processing Assisted by Electrical Current
,”
J. Mater. Process. Technol.
,
216
, pp.
375
380
.
29.
Stolyarov
,
V.
,
2009
, “
Deformability and Nanostructuring of TiNi Shape-Memory Alloys During Electroplastic Rolling
,”
Mater. Sci. Eng. A
,
503
(
1
), pp.
18
20
.
30.
Ng
,
M.
,
Li
,
L.
,
Fan
,
Z.
,
Gao
,
R. X.
,
Smith
,
E. F.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2015
, “
Joining Sheet Metals by Electrically-Assisted Roll Bonding
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
273
276
.
31.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann. Manuf. Technol.
,
54
(
2
), pp.
88
114
.
32.
Neveux
,
T.
,
Ruszkiewicz
,
B. J.
,
Roth
,
J. T.
, and
Ragai
,
I.
,
2016
, “
Electrically Assisted Global Springback Elimination After Single Point Incremental Forming
,”
ASME
Paper No. MSEC2016-8813.
33.
Ruszkiewicz
,
B. J.
,
Roth
,
J. T.
, and
Johnson
,
D. H.
,
2015
, “
Locally Applied Direct Electric Current's Effect on Springback of 2024-T3 Aluminum After Single Point Incremental Forming
,”
ASME
Paper No. MSEC2015-9429.
34.
Khal
,
A.
,
Ruszkiewicz
,
B. J.
, and
Mears
,
L.
,
2016
, “
Springback Evaluation of 304 Stainless Steel in an Electrically Assisted Air Bending Operation
,”
ASME
Paper No. MSEC2016-8736.
35.
Grimm
,
T.
,
Roth
,
J. T.
, and
Ragai
,
I.
,
2016
, “
Electrically Assisted Global Springback Elimination in AMS-T-9046 Titanium After Single Point Incremental Forming
,”
ASME
Paper No. MSEC2016-8811.
36.
Roth
,
J.
,
2011
, “
Single Point Incremental Forming of Metallic Materials Using Applied Direct Current
,” Penn State Research Foundation, University Park, PA, U.S. Patent No.
8,021,501
.https://www.google.ch/patents/US8021501
37.
Fan
,
G.
,
Sun
,
F.
,
Meng
,
X.
,
Gao
,
L.
, and
Tong
,
G.
,
2010
, “
Electric Hot Incremental Forming of Ti-6Al-4V Titanium Sheet
,”
Int. J. Adv. Manuf. Technol.
,
49
(
9–12
), pp.
941
947
.
38.
Fan
,
G.
,
Gao
,
L.
,
Hussain
,
G.
, and
Wu
,
Z.
,
2008
, “
Electric Hot Incremental Forming: A Novel Technique
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1688
1692
.
39.
Shi
,
X.
,
Gao
,
L.
,
Khalatbari
,
H.
,
Xu
,
Y.
,
Wang
,
H.
, and
Jin
,
L.
,
2013
, “
Electric Hot Incremental Forming of Low Carbon Steel Sheet: Accuracy Improvement
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
241
247
.
40.
Bao
,
W.
,
Chu
,
X.
,
Lin
,
S.
, and
Gao
,
J.
,
2015
, “
Experimental Investigation on Formability and Microstructure of AZ31B Alloy in Electropulse-Assisted Incremental Forming
,”
Mater. Des.
,
87
, pp.
632
639
.
41.
Honarpisheh
,
M.
,
Abdolhoseini
,
M.
, and
Amini
,
S.
,
2016
, “
Experimental and Numerical Investigation of the Hot Incremental Forming of Ti-6Al-4V Sheet Using Electrical Current
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
2027
2037
.
42.
Xu
,
D.
,
Lu
,
B.
,
Cao
,
T.
,
Zhang
,
H.
,
Chen
,
J.
,
Long
,
H.
, and
Cao
,
J.
,
2016
, “
Enhancement of Process Capabilities in Electrically-Assisted Double Sided Incremental Forming
,”
Mater. Des.
,
92
, pp.
268
280
.
43.
Liu
,
R.
,
Lu
,
B.
,
Xu
,
D.
,
Chen
,
J.
,
Chen
,
F.
,
Ou
,
H.
, and
Long
,
H.
,
2016
, “
Development of Novel Tools for Electricity-Assisted Incremental Sheet Forming of Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1137
1144
.
44.
Xie
,
H.
,
Dong
,
X.
,
Peng
,
F.
,
Wang
,
Q.
,
Liu
,
K.
,
Wang
,
X.
, and
Chen
,
F.
,
2016
, “
Investigation on the Electrically-Assisted Stress Relaxation of AZ31B Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
227
, pp.
88
95
.
45.
Adams
,
D.
, and
Jeswiet
,
J.
,
2014
, “
Single-Point Incremental Forming of 6061-T6 Using Electrically Assisted Forming Methods
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
7
), pp.
757
764
.
46.
Valoppi
,
B.
,
Egea
,
A. J. S.
,
Zhang
,
Z.
,
Rojas
,
H. A. G.
,
Ghiotti
,
A.
,
Bruschi
,
S.
, and
Cao
,
J.
,
2016
, “
A Hybrid Mixed Double-Sided Incremental Forming Method for Forming Ti6Al4V Alloy
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
309
312
.
47.
Nguyen-Tran
,
H.
,
Oh
,
H.
,
Hong
,
S.
,
Han
,
H. N.
,
Cao
,
J.
,
Ahn
,
S.
, and
Chun
,
D.
,
2015
, “
A Review of Electrically-Assisted Manufacturing
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
2
(
4
), pp.
365
376
.
48.
Guan
,
L.
,
Tang
,
G.
, and
Chu
,
P. K.
,
2010
, “
Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals
,”
J. Mater. Res.
,
25
(
7
), pp.
1215
1224
.
49.
Machlin
,
E.
,
1959
, “
Applied Voltage and the Plastic Properties of ‘Brittle’ Rock Salt
,”
J. Appl. Phys.
,
30
(
7
), pp.
1109
1110
.
50.
Andrawes
,
J. S.
,
Kronenberger
,
T. J.
,
Perkins
,
T. A.
,
Roth
,
J. T.
, and
Warley
,
R. L.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Process.
,
22
(
1
), pp.
91
101
.
51.
Wang
,
X.
,
Xu
,
J.
,
Jiang
,
Z.
,
Zhu
,
W.
,
Shan
,
D.
,
Guo
,
B.
, and
Cao
,
J.
,
2016
, “
Size Effects on Flow Stress Behavior During Electrically-Assisted Micro-Tension in a Magnesium Alloy AZ31
,”
Mater. Sci. Eng. A
,
659
, pp.
215
224
.
52.
Zheng
,
Q.
,
Shimizu
,
T.
,
Shiratori
,
T.
, and
Yang
,
M.
,
2014
, “
Tensile Properties and Constitutive Model of Ultrathin Pure Titanium Foils at Elevated Temperatures in Microforming Assisted by Resistance Heating Method
,”
Mater. Des.
,
63
, pp.
389
397
.
53.
Kim
,
M.
,
Vinh
,
N. T.
,
Yu
,
H.
,
Hong
,
S.
,
Lee
,
H.
,
Kim
,
M.
,
Han
,
H. N.
, and
Roth
,
J. T.
,
2014
, “
Effect of Electric Current Density on the Mechanical Property of Advanced High Strength Steels Under Quasi-Static Tensile Loads
,”
Int. J. Precis. Eng. Manuf.
,
15
(
6
), pp.
1207
1213
.
54.
Fan
,
R.
,
Magargee
,
J.
,
Hu
,
P.
, and
Cao
,
J.
,
2013
, “
Influence of Grain Size and Grain Boundaries on the Thermal and Mechanical Behavior of 70/30 Brass Under Electrically-Assisted Deformation
,”
Mater. Sci. Eng. A
,
574
, pp.
218
225
.
55.
Siopis
,
M. S.
,
Kinsey
,
B. L.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2011
, “
Effect of Severe Prior Deformation on Electrical-Assisted Compression of Copper Specimens
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
064502
.
56.
Magargee
,
J.
,
Fan
,
R.
, and
Cao
,
J.
,
2013
, “
Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061022
.
57.
Pleta
,
A. D.
,
Krugh
,
M. C.
,
Nikhare
,
C.
, and
Roth
,
J. T.
,
2103
, “
An Investigation of Anisotropic Behavior on 5083 Aluminum Alloy Using Electric Current
,”
ASME
Paper No. MSEC2013-1244.
58.
Jones
,
J.
,
2012
, “
Flow Behavior Modeling and Process Control of Electrically-Assisted Forming (EAF) for Sheet Metals in Uniaxial Tension
,”
Ph.D. dissertation
, Clemson University, Clemson, SC.http://tigerprints.clemson.edu/all_dissertations/1069/
59.
Xu
,
Q.
,
Guan
,
L.
,
Jiang
,
Y.
,
Tang
,
G.
, and
Wang
,
S.
,
2010
, “
Improved Plasticity of Mg–Al–Zn Alloy by Electropulsing Tension
,”
Mater. Lett.
,
64
(
9
), pp.
1085
1087
.
60.
Roth
,
J.
,
Loker
,
I.
,
Mauck
,
D.
,
Warner
,
M.
,
Golovashchenko
,
S.
, and
Krause
,
A.
,
2008
, “
Enhanced Formability of 5754 Aluminum Sheet Metal Using Electric Pulsing
,” 36th North American Manufacturing Research Conference (NAMRC), Monterrey, Mexico, May 20–23, pp.
405
412
.
61.
Yang
,
D.
, and
Conrad
,
H.
,
2001
, “
Exploratory Study Into the Effects of an Electric Field and of High Current Density Electropulsing on the Plastic Deformation of TiAl
,”
Intermetallics
,
9
(
10
), pp.
943
947
.
62.
Cao
,
W.
,
Lu
,
X.
, and
Conrad
,
H.
,
1996
, “
Whisker Formation and the Mechanism of Superplastic Deformation
,”
Acta Mater.
,
44
(
2
), pp.
697
706
.
63.
Liu
,
S.
,
Chen
,
C.
,
Liu
,
P.
, and
Chou
,
T.
,
2004
, “
Tin Whisker Growth Driven by Electrical Currents
,”
J. Appl. Phys.
,
95
(
12
), pp.
7742
7747
.
64.
Fukuda
,
Y.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2007
, “
The Impact of Electrical Current, Mechanical Bending, and Thermal Annealing on Tin Whisker Growth
,”
Microelectron. Reliab.
,
47
(
1
), pp.
88
92
.
65.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
,
2007
, “
Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
342
347
.
66.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of DC on the Formability of Ti–6Al–4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
.
67.
Bunget
,
C. J.
,
Salandro
,
W. A.
, and
Mears
,
L.
,
2012
, “
Sensitivities When Modeling Electrically-Assisted Forming
,”
ASME
Paper No. MSEC2012-7334.
68.
Troitskii
,
O.
,
Spitsyn
,
N.
,
Sokolov
,
N.
, and
Ryzhkov
,
V.
,
1978
, “Electroplastic Drawing of Steel, Copper, and Tungsten,”
Dokl. Akad. Nauk.
,
243
, p. 330.
69.
Salandro
,
W.
,
2012
, “
Thermo-Mechanical Modeling of the Electrically-Assisted Manufacturing (EAM) Technique During Open Die Forging
,”
Ph.D. dissertation
, Clemson University, Clemson, SC.http://tigerprints.clemson.edu/all_dissertations/968/
70.
Egea
,
A. J. S.
,
Rojas
,
H. A. G.
,
Celentano
,
D. J.
,
Travieso-Rodríguez
,
J. A.
, and
Fuentes
,
J. L.
,
2014
, “
Electroplasticity-Assisted Bottom Bending Process
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2261
2267
.
71.
Li
,
X.
,
Zhou
,
Q.
,
Zhao
,
S.
, and
Chen
,
J.
,
2014
, “
Effect of Pulse Current on Bending Behavior of Ti6Al4V Alloy
,”
Procedia Eng.
,
81
, pp.
1799
1804
.
72.
Jordan
,
A.
, and
Kinsey
,
B. L.
,
2015
, “
Investigation of Thermal and Mechanical Effects During Electrically-Assisted Microbending
,”
J. Mater. Process. Technol.
,
221
, pp.
1
12
.
73.
Ruszkiewicz
,
B. J.
,
Scriva
,
C.
,
Reese
,
Z. C.
,
Nikhare
,
C. P.
,
Roth
,
J. T.
, and
Ragai
,
I.
,
2015
, “
Direct Electric Current Spot Treatment's Effect on Springback of 90 Degree Bent 2024-T3 Aluminum
,”
ASME
Paper No. MSEC2015-9433.
74.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2010
, “
Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal
,”
ASME
Paper No. MSEC2010-34043.
75.
Green
,
C. R.
,
McNeal
,
T. A.
, and
Roth
,
J. T.
,
2009
, “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,” 37th North American Manufacturing Research Conference (NAMRC), Greenville, SC, May 19–22, pp.
403
410
.
76.
Klypin
,
A.
,
1979
, “
Structure and Properties of Alloys Under the Influence of Electric Field
,”
Met. Sci. Heat Treat.
,
21
(
3
), pp.
177
181
.
77.
Kishkin
,
S.
, and
Klypin
,
A.
, 1974, “
Effects of Electric and Magnetic Fields on Creep in Metals and Alloys
,”
Sov. Phys. Dokl.
,
18
, p.
502
.
78.
Kishkin
,
S.
, and
Klypin
,
A.
, 1973, “
Effects of Electrical and Magnetic Action on the Creep of Metals and Alloys
,”
Dokl. Akad. Nauk SSSR
,
212
(2), pp.
325
327
.
79.
Pan
,
R.
,
Wang
,
Q.
,
Sun
,
D.
, and
He
,
P.
,
2015
, “
Effects of Electric Field on Interfacial Microstructure and Shear Strength of Diffusion Bonded α-Al2O3/Ti Joints
,”
J. Eur. Ceram. Soc.
,
35
(
1
), pp.
219
226
.
80.
Chen
,
S.
,
Chen
,
C.
, and
Liu
,
W.
,
1998
, “
Electric Current Effects Upon the Sn/Cu and Sn/Ni Interfacial Reactions
,”
J. Electron. Mater.
,
27
(
11
), pp.
1193
1199
.
81.
San Martin
,
A.
,
Nghiep
,
D.
,
Paufler
,
P.
,
Kleinstück
,
K.
,
Krämer
,
U.
, and
Quyen
,
N.
,
1980
, “
The Electroplastic Effect in V3Si
,”
Scr. Metall.
,
14
(
10
), pp.
1041
1045
.
82.
Conrad
,
H.
,
Karam
,
N.
,
Mannan
,
S.
, and
Sprecher
,
A.
,
1988
, “
Effect of Electric Current Pulses on the Recrystallization Kinetics of Copper
,”
Scr. Metall.
,
22
(
2
), pp.
235
238
.
83.
Conrad
,
H.
,
Karam
,
N.
, and
Mannan
,
S.
,
1983
, “
Effect of Electric Current Pulses on the Recrystallization of Copper
,”
Scr. Metall.
,
17
(
3
), pp.
411
416
.
84.
Conrad
,
H.
,
Karam
,
N.
, and
Mannan
,
S.
,
1984
, “
Effect of Prior Cold Work on the Influence of Electric Current Pulses on the Recrystallization of Copper
,”
Scr. Metall.
,
18
(
3
), pp.
275
280
.
85.
Conrad
,
H.
,
Guo
,
Z.
, and
Sprecher
,
A.
,
1989
, “
Effect of an Electric Field on the Recovery and Recrystallization of Al and Cu
,”
Scr. Metall.
,
23
(
6
), pp.
821
823
.
86.
Heigel
,
J. C.
,
Andrawes
,
J. S.
,
Roth
,
J. T.
,
Hoque
,
M. E.
, and
Ford
,
R. M.
,
2005
, “
Viability of Electrically Treating 6061 T651 Aluminum for Use in Manufacturing Processes
,” 33rd North American Manufacturing Research Conference (NAMRC), New York, May 23–27, pp. 145–152.
87.
Murav'ev
,
V.
,
Yakimov
,
A.
, and
Chernyshev
,
A.
,
2003
, “
Effect of Deformation, Welding, and Electrocontact Heating on the Properties of Titanium Alloy VT20 in Pressed and Welded Structures
,”
Met. Sci. Heat Treat.
,
45
(
11
), pp.
419
422
.
88.
Onodera
,
Y.
,
Maruyama
,
J. I.
, and
Hirano
,
K. I.
,
1977
, “
Retardation of the Precipitation Reaction by Dc Stress in an Al-12.5 wt% Zn Alloy
,”
J. Mater. Sci.
,
12
(
6
), pp.
1109
1114
.
89.
Onodera
,
Y.
, and
Hirano
,
K.
,
1984
, “
The Effect of AC Frequency on Precipitation in Al-5.6 at% Zn
,”
J. Mater. Sci.
,
19
(
12
), pp.
3935
3939
.
90.
Conrad
,
H.
,
2000
, “
Effects of Electric Current on Solid State Phase Transformations in Metals
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
227
237
.
91.
Mizubayashi
,
H.
, and
Okuda
,
S.
,
1989
, “
Structural Relaxation Induced by Passing Electric Current in Amorphous Cu50 Ti50 at Low Temperatures
,”
Phys. Rev. B
,
40
(
11
), pp.
8057
8060
.
92.
Takemoto
,
R.
,
Nagata
,
M.
, and
Mizubayashi
,
H.
,
1996
, “
Effects of Passing Electric Current on the Elastic Property of Amorphous Cu50 Zr50 and Cu50 Ti50
,”
Acta Mater.
,
44
(
7
), pp.
2787
2795
.
93.
Takemoto
,
R.
, and
Mizubayashi
,
H.
,
1995
, “
Effects of Passing Electric Current on Structural Relaxation, Crystallization and Elastic Property in Amorphous Cu50 Ti50
,”
Acta Metall. Mater.
,
43
(
4
), pp.
1495
1504
.
94.
Lai
,
Z.
,
Conrad
,
H.
,
Chao
,
Y.
,
Wang
,
S.
, and
Sun
,
J.
,
1989
, “
Effect of Electropulsing on the Microstructure and Properties of Iron-Based Amorphous Alloys
,”
Scr. Metall.
,
23
(
3
), pp.
305
310
.
95.
Lai
,
Z.
,
Chao
,
Y.
,
Conrad
,
H.
, and
Chu
,
K.
,
1995
, “
Hyperfine Structure Changes in Iron-Base Amorphous Alloys Produced by High Current Density Electropulsing
,”
J. Mater. Res.
,
10
(
4
), pp.
900
906
.
96.
Teng
,
G.
,
Chao
,
Y.
,
Dong
,
L.
,
Geng
,
Y.
, and
Lai
,
Z.
,
1996
, “
Features of Nanocrystallization of Metallic Glass Fe78B13Si9 Induced by High-Current-Density Electropulsing
,”
Jpn. J. Appl. Phys.
,
35
(
10R
), p.
5320
.
97.
Teng
,
G.
,
Chao
,
Y.
,
Lai
,
Z.
, and
Dong
,
L.
,
1996
, “
Microstructural Study of the Low‐Temperature Nanocrystallization of Amorphous Fe78B13Si9
,”
Phys. Status Solidi (a)
,
156
(
2
), pp.
265
276
.
98.
Shine
,
M.
, and
Herd
,
S.
,
1972
, “
Effect of Direct Current on Precipitation in Quenched Al + 4% Cu Thin Films
,”
Appl. Phys. Lett.
,
20
(
6
), pp.
217
219
.
99.
Zhou
,
Y.
,
Guo
,
J.
,
Zhang
,
W.
, and
He
,
G.
,
2002
, “
Influence of Electropulsing on Nucleation During Phase Transformation
,”
J. Mater. Res.
,
17
(
12
), pp.
3012
3014
.
100.
Kim
,
M.
,
Lee
,
K.
,
Oh
,
K. H.
,
Choi
,
I.
,
Yu
,
H.
,
Hong
,
S.
, and
Han
,
H. N.
,
2014
, “
Electric Current-Induced Annealing During Uniaxial Tension of Aluminum Alloy
,”
Scr. Mater.
,
75
, pp.
58
61
.
101.
Andrawes
,
J. S.
,
Heigel
,
J. C.
,
Roth
,
J. T.
, and
Warley
,
R. L.
,
2004
, “
Effects of DC Current on the Stress-Strain Curve and Hardness of 6061 T6511 Aluminum
,”
ASME
Paper No. IMECE2004-61829.
102.
Xu
,
Z. S.
, and
Chen
,
Y. X.
,
1988
, “
Effect of Electric Current on the Recrystallization Behavior of Cold Worked α-Ti
,”
Scr. Metall.
,
22
(
2
), pp.
187
190
.
103.
Silveira
,
V.
,
Ribeiro
,
J.
,
Soares
,
G.
, and
Mannheimer
,
W.
,
1984
, “
An Effect of the Passage of Electric Current During Heat Treatment on the Hydrogen Embrittlement of Steel
,”
Scr. Metall.
,
18
(
2
), pp.
131
132
.
104.
Wang
,
X. L.
,
Dai
,
W. B.
,
Lu
,
Y.
,
He
,
S. Y.
, and
Zhao
,
X. Β.
,
2011
, “
β′ Phase Precipitation in a Cold Rolled Cu-Zn Alloy Under Electric Current Pulses
,”
Adv. Mater. Res.
,
197–198
, pp.
692
695
.
105.
Jeong
,
H.
,
Kim
,
M.
,
Park
,
J.
,
Yim
,
C. D.
,
Kim
,
J. J.
,
Kwon
,
O. D.
,
Madakashira
,
P. P.
, and
Han
,
H. N.
,
2017
, “
Effect of Pulsed Electric Current on Dissolution of Mg17Al12 Phases in as-Extruded AZ91 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
684
, pp.
668
676
.
106.
Kuang
,
J.
,
Du
,
X.
,
Li
,
X.
,
Yang
,
Y.
,
Luo
,
A. A.
, and
Tang
,
G.
,
2016
, “
Athermal Influence of Pulsed Electric Current on the Twinning Behavior of Mg–3Al–1Zn Alloy During Rolling
,”
Scr. Mater.
,
114
, pp.
151
155
.
107.
Troitskii
,
O.
,
1969
, “
Electromechanical Effect in Metals
,”
ZhETF Pisma. Red.
,
10
, pp.
18
22
.
108.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
276
287
.
109.
Sprecher
,
A.
,
Mannan
,
S.
, and
Conrad
,
H.
,
1986
, “
Overview No. 49: On the Mechanisms for the Electroplastic Effect in Metals
,”
Acta Metall.
,
34
(
7
), pp.
1145
1162
.
110.
Spitsyn
,
V.
,
Troitskii
,
O.
,
Gusev
,
E.
, and
Kurdiukov
,
V.
,
1974
, “Electroplastic Deformation of Stainless (18/9) Steel,”
Izv. Akad.Nauk SSSR [Khim]
,
2
, p. 123.
111.
Troitskii
,
O.
,
1977
, “
Effect of the Electron State of a Metal on Its Mechanical Properties and the Phenomenon of Electroplasticity
,”
Strength Mater.
,
9
(
1
), pp.
35
45
.
112.
Troitskii
,
O.
, and
Likhtman
,
V.
,
1963
, “
The Anisotropy of the Action of Electron and Radiation on the Deformation of Zinc Single Crystal in the Brittle State
,”
Dokl. Akad. Nauk
,
148
, pp.
332
334
.
113.
Nabarro
,
F. R.
,
1967
,
Theory of Crystal Dislocations
,
Dover Publications
,
Mineola, NY
.
114.
Spitsyn
,
V.
, and
Troitskii
,
O.
, “
Simulation of the Thermal and Pinch Effects of Pulsed Current on the Plastic Deformation of a Metal
,”
Sov. Phys. Dokl.
,
20
, p. 132.
115.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1980
, “
An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titanium
,”
Mater. Sci. Eng.
,
45
(
2
), pp.
109
116
.
116.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041003
.
117.
Kronenberger
,
T. J.
,
Johnson
,
D. H.
, and
Roth
,
J. T.
,
2009
, “
Coupled Multifield Finite Element Analysis Model of Upsetting Under an Applied Direct Current
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031003
.
118.
Khalilollahi
,
A.
,
Johnson
,
D. H.
, and
Roth
,
J. T.
,
2009
, “
A Comparative Multifield FEA and Experimental Study on the Enhanced Manufacturability of 6061-T6511 Aluminum Using DC Current
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
064503
.
119.
Hariharan
,
K.
,
Lee
,
M.
,
Kim
,
M.
,
Han
,
H. N.
,
Kim
,
D.
, and
Choi
,
S.
,
2015
, “
Decoupling Thermal and Electrical Effect in an Electrically Assisted Uniaxial Tensile Test Using Finite Element Analysis
,”
Metall. Mater. Trans. A
,
46
(
7
), pp.
3043
3051
.
120.
Timsit
,
R.
,
1981
, “
Remarks on Recent Experimental Observations of the Electroplastic Effect
,”
Scr. Metall.
,
15
(
4
), pp.
461
464
.
121.
Molotskii
,
M.
, and
Fleurov
,
V.
,
1995
, “
Magnetic Effects in Electroplasticity of Metals
,”
Phys. Rev. B
,
52
(
22
), p.
15829
.
122.
Krokhin
,
A.
,
Gumen
,
L.
, and
Galligan
,
J.
,
1998
, “
Tilt Effect in the Electron Drag of Dislocations in Metals
,”
Philos. Mag. A
,
77
(
2
), pp.
497
506
.
123.
Golovin
,
Y. I.
,
2004
, “
Magnetoplastic Effects in Solids
,”
Phys. Solid State
,
46
(
5
), pp.
789
824
.
124.
Jiang
,
T.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Analysis of the Electric and Thermal Effects on Mechanical Behavior of SS304 Subjected to Electrically Assisted Forming Process
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061004
.
125.
Siopis
,
M. S.
, and
Kinsey
,
B. L.
,
2010
, “
Experimental Investigation of Grain and Specimen Size Effects During Electrical-Assisted Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021004
.
126.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2012
, “
Modeling the Electroplastic Effect During Electrically-Assisted Forming of 304 Stainless Steel
,”
ASME
Paper No. MSEC2012-7241.
127.
Ruszkiewicz
,
B.
, and
Mears
,
L.
,
2016
, “
Temperature Controlled Forming of 7075-T6 Aluminum Using Linearly Decaying Direct Electric Current
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
091009
.
128.
Lee
,
J.
,
Kim
,
S.
,
Lee
,
M.
,
Song
,
J. H.
,
Choi
,
S.
,
Han
,
H. N.
, and
Kim
,
D.
,
2016
, “
Experimental and Numerical Study on the Deformation Mechanism in AZ31B mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
2783
2794
.
129.
Goldman
,
P.
,
Motowidlo
,
L.
, and
Galligan
,
J.
,
1981
, “
The Absence of an Electroplastic Effect in Lead at 4.2 K
,”
Scr. Metall.
,
15
(
4
), pp.
353
356
.
130.
Wang
,
X.
,
Xu
,
J.
,
Shan
,
D.
,
Guo
,
B.
, and
Cao
,
J.
,
2016
, “
Modeling of Thermal and Mechanical Behavior of a Magnesium Alloy AZ31 During Electrically-Assisted Micro-Tension
,”
Int. J. Plast.
,
85
, pp.
230
257
.
131.
Kinsey
,
B.
,
Cullen
,
G.
,
Jordan
,
A.
, and
Mates
,
S.
,
2013
, “
Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti–6Al–4V
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
279
282
.
132.
Kang
,
W.
,
Beniam
,
I.
, and
Qidwai
,
S. M.
,
2016
, “
In Situ Electron Microscopy Studies of Electromechanical Behavior in Metals at the Nanoscale Using a Novel Microdevice-Based System
,”
Rev. Sci. Instrum.
,
87
(
9
), p.
095001
.
133.
Molotskii
,
M. I.
,
2000
, “
Theoretical Basis for Electro-and Magnetoplasticity
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
248
258
.
134.
Kim
,
S.
,
Kim
,
S.
,
Yoo
,
D.
,
Lee
,
J.
,
Rhyim
,
Y.
, and
Kim
,
D.
,
2016
, “
Evaluation of the Athermal Effect of Electric Pulsing on the Recovery Behavior of Magnesium Alloy
,”
Metall. Mater. Trans. A
,
47
(
12
), pp.
6368
6373
.
135.
Niaki
,
F. A.
,
Michel
,
M.
, and
Mears
,
L.
,
2016
, “
State of Health Monitoring in Machining: Extended Kalman Filter for Tool Wear Assessment in Turning of IN718 Hard-to-Machine Alloy
,”
J. Manuf. Process.
,
24
(
2
), pp.
361
369
.
136.
Niaki
,
F. A.
,
Feng
,
L.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2016
, “
A Wavelet-Based Data-Driven Modelling for Tool Wear Assessment of Difficult to Machine Materials
,”
Int. J. Mechatronics Manuf. Syst.
,
9
(
2
), pp.
97
121
.https://doi.org/10.1504/IJMMS.2016.076168
You do not currently have access to this content.