Fine-scale characterization and monitoring of spatiotemporal processes are crucial for high-performance quality control of manufacturing processes, such as ultrasonic metal welding and high-precision machining. However, it is generally expensive to acquire high-resolution spatiotemporal data in manufacturing due to the high cost of the three-dimensional (3D) measurement system or the time-consuming measurement process. In this paper, we develop a novel dynamic sampling design algorithm to cost-effectively characterize spatiotemporal processes in manufacturing. A spatiotemporal state-space model and Kalman filter are used to predictively determine the measurement locations using a criterion considering both the prediction performance and the measurement cost. The determination of measurement locations is formulated as a binary integer programming problem, and genetic algorithm (GA) is applied for searching the optimal design. In addition, a new test statistic is proposed to monitor and update the surface progression rate. Both simulated and real-world spatiotemporal data are used to demonstrate the effectiveness of the proposed method.

References

References
1.
Shao
,
C.
,
Paynabar
,
K.
,
Kim
,
T. H.
,
Jin
,
J. J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
,
Wang
,
H.
, and
Abell
,
J. A.
,
2013
, “
Feature Selection for Manufacturing Process Monitoring Using Cross-Validation
,”
J. Manuf. Syst.
,
32
(
4
), pp.
550
555
.
2.
Shao
,
C.
,
Guo
,
W.
,
Kim
,
T. H.
,
Jin
,
J. J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2014
, “
Characterization and Monitoring of Tool Wear in Ultrasonic Metal Welding
,”
Ninth International Workshop on Microfactories
(
IWMF
), Honolulu, HI, Oct. 5–8, pp.
161
169
.http://conf.papercept.net/images/temp/IWMF/media/files/0050.pdf
3.
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Jin
,
J. J.
,
Abell
,
J. A.
, and
Spicer
,
J. P.
,
2016
, “
Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051005
.
4.
Lee
,
S. S.
,
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
,
Cai
,
W. W.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2014
, “
Characterization of Ultrasonic Metal Welding by Correlating Online Sensor Signals With Weld Attributes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051019
.
5.
Zerehsaz
,
Y.
,
Shao
,
C.
, and
Jin
,
J.
, “
Tool Wear Monitoring in Ultrasonic Welding Using High-Order Decomposition
,”
J. Intell. Manuf.
, epub.
6.
Shao
,
C.
,
2016
, “
Data-Based Spatial and Temporal Modeling for Surface Variation Monitoring in Manufacturing
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/120743
7.
Suriano
,
S.
,
Wang
,
H.
,
Shao
,
C.
,
Hu
,
S. J.
, and
Sekhar
,
P.
,
2015
, “
Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations
,”
IIE Trans.
,
47
(
10
), pp.
1033
1052
.
8.
Shao
,
C.
,
Ren
,
J.
,
Wang
,
H.
,
Jin
,
J. J.
, and
Hu
,
S. J.
,
2017
, “
Improving Machined Surface Shape Prediction by Integrating Multi-Task Learning With Cutting Force Variation Modeling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011014
.
9.
Yang
,
T.-H.
, and
Jackman
,
J.
,
2000
, “
Form Error Estimation Using Spatial Statistics
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
262
272
.
10.
Zhao
,
H.
,
Jin
,
R.
,
Wu
,
S.
, and
Shi
,
J.
,
2011
, “
PDE-Constrained Gaussian Process Model on Material Removal Rate of Wire Saw Slicing Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021012
.
11.
Cressie
,
N.
,
2015
,
Statistics for Spatial Data
,
Wiley
,
New York
.
12.
Du
,
S.
, and
Fei
,
L.
,
2016
, “
Co-Kriging Method for Form Error Estimation Incorporating Condition Variable Measurements
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041003
.
13.
McBratney
,
A.
,
Webster
,
R.
, and
Burgess
,
T.
,
1981
, “
The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables—I: Theory and Method
,”
Comput. Geosci.
,
7
(
4
), pp.
331
334
.
14.
McBratney
,
A.
, and
Webster
,
R.
,
1981
, “
The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables—II: Program and Examples
,”
Comput. Geosci.
,
7
(
4
), pp.
335
365
.
15.
Brus
,
D.
, and
De Gruijter
,
J.
,
1997
, “
Random Sampling or Geostatistical Modelling? Choosing Between Design-Based and Model-Based Sampling Strategies for Soil (With Discussion)
,”
Geoderma
,
80
(
1
), pp.
1
44
.
16.
Anderson
,
A.
,
Wang
,
G.
, and
Gertner
,
G.
,
2006
, “
Local Variability Based Sampling for Mapping a Soil Erosion Cover Factor by Co-Simulation With Landsat TM Images
,”
Int. J. Rem. Sens.
,
27
(
12
), pp.
2423
2447
.
17.
Wang
,
J.-F.
,
Stein
,
A.
,
Gao
,
B.-B.
, and
Ge
,
Y.
,
2012
, “
A Review of Spatial Sampling
,”
Spat. Stat.
,
2
, pp.
1
14
.
18.
Hoban
,
S.
, and
Strand
,
A.
,
2015
, “
Ex Situ Seed Collections Will Benefit From Considering Spatial Sampling Design and Species' Reproductive Biology
,”
Biol. Conserv.
,
187
, pp.
182
191
.
19.
Hinckley
,
E.-L. S.
,
Bonan
,
G. B.
,
Bowen
,
G. J.
,
Colman
,
B. P.
,
Duffy
,
P. A.
,
Goodale
,
C. L.
,
Houlton
,
B. Z.
,
Marín-Spiotta
,
E.
,
Ogle
,
K.
,
Ollinger
,
S. V.
,
Paul
,
E. A.
,
Vitousek
,
P. M.
,
Weathers
,
K. C.
, and
Williams
,
D. G.
,
2016
, “
The Soil and Plant Biogeochemistry Sampling Design for the National Ecological Observatory Network
,”
Ecosphere
,
7
(
3
), p.
e01234
.
20.
Hanks
,
E. M.
,
Hooten
,
M. B.
,
Knick
,
S. T.
,
Oyler-McCance
,
S. J.
,
Fike
,
J. A.
,
Cross
,
T. B.
, and
Schwartz
,
M. K.
,
2016
, “
Latent Spatial Models and Sampling Design for Landscape Genetics
,”
Ann. Appl. Stat.
,
10
(
2
), pp.
1041
1062
.
21.
Jin
,
R.
,
Chang
,
C.-J.
, and
Shi
,
J.
,
2012
, “
Sequential Measurement Strategy for Wafer Geometric Profile Estimation
,”
IIE Trans.
,
44
(
1
), pp.
1
12
.
22.
Zhu
,
Z.
, and
Stein
,
M. L.
,
2006
, “
Spatial Sampling Design for Prediction With Estimated Parameters
,”
J. Agric., Biol., Environ. Stat.
,
11
(
1
), pp.
24
44
.
23.
Fanshawe
,
T. R.
, and
Diggle
,
P. J.
,
2013
, “
Adaptive Sampling Design for Spatio-Temporal Prediction
,”
Spatio-Temporal Design: Advances in Efficient Data Acquisition
,
Wiley
,
New York
, pp.
249
268
.
24.
Wikle
,
C. K.
, and
Royle
,
J. A.
,
1999
, “
Space–Time Dynamic Design of Environmental Monitoring Networks
,”
J. Agric., Biol., Environ. Stat.
,
4
(
4
), pp.
489
507
.
25.
Hooten
,
M. B.
,
Wikle
,
C. K.
,
Sheriff
,
S. L.
, and
Rushin
,
J. W.
,
2009
, “
Optimal Spatio-Temporal Hybrid Sampling Designs for Ecological Monitoring
,”
J. Veg. Sci.
,
20
(
4
), pp.
639
649
.
26.
Wikle
,
C. K.
, and
Royle
,
J. A.
,
2005
, “
Dynamic Design of Ecological Monitoring Networks for Non-Gaussian Spatio-Temporal Data
,”
Environmetrics
,
16
(
5
), pp.
507
522
.
27.
Huang
,
H.-C.
, and
Cressie
,
N.
,
1996
, “
Spatio-Temporal Prediction of Snow Water Equivalent Using the Kalman Filter
,”
Comput. Stat. Data Anal.
,
22
(
2
), pp.
159
175
.
28.
Wikle
,
C. K.
,
Berliner
,
L. M.
, and
Cressie
,
N.
,
1998
, “
Hierarchical Bayesian Space-Time Models
,”
Environ. Ecol. Stat.
,
5
(
2
), pp.
117
154
.
29.
Harrison
,
J.
, and
West
,
M.
,
1999
,
Bayesian Forecasting & Dynamic Models
,
Springer
,
New York
.
30.
Hamilton
,
J. D.
,
1994
,
Time Series Analysis
, Vol.
2
,
Princeton University Press
,
Princeton, NJ
.
31.
Burer
,
S.
, and
Letchford
,
A. N.
,
2012
, “
Non-Convex Mixed-Integer Nonlinear Programming: A Survey
,”
Surv. Oper. Res. Manage. Sci.
,
17
(
2
), pp.
97
106
.
32.
Hendy
,
M. D.
, and
Penny
,
D.
,
1982
, “
Branch and Bound Algorithms to Determine Minimal Evolutionary Trees
,”
Math. Biosci.
,
59
(
2
), pp.
277
290
.
33.
Ryoo
,
H. S.
, and
Sahinidis
,
N. V.
,
1996
, “
A Branch-and-Reduce Approach to Global Optimization
,”
J. Global Optim.
,
8
(
2
), pp.
107
138
.
34.
Exler
,
O.
,
Antelo
,
L. T.
,
Egea
,
J. A.
,
Alonso
,
A. A.
, and
Banga
,
J. R.
,
2008
, “
A Tabu Search-Based Algorithm for Mixed-Integer Nonlinear Problems and Its Application to Integrated Process and Control System Design
,”
Comput. Chem. Eng.
,
32
(
8
), pp.
1877
1891
.
35.
Luo
,
Y.
,
Yuan
,
X.
, and
Liu
,
Y.
,
2007
, “
An Improved PSO Algorithm for Solving Non-Convex NLP/MINLP Problems With Equality Constraints
,”
Comput. Chem. Eng.
,
31
(
3
), pp.
153
162
.
36.
Schlüter
,
M.
,
Egea
,
J. A.
, and
Banga
,
J. R.
,
2009
, “
Extended Ant Colony Optimization for Non-Convex Mixed Integer Nonlinear Programming
,”
Comput. Oper. Res.
,
36
(
7
), pp.
2217
2229
.
37.
Pillonetto
,
G.
,
Dinuzzo
,
F.
,
Chen
,
T.
,
De Nicolao
,
G.
, and
Ljung
,
L.
,
2014
, “
Kernel Methods in System Identification, Machine Learning and Function Estimation: A Survey
,”
Automatica
,
50
(
3
), pp.
657
682
.
38.
Gombay
,
E.
, and
Serban
,
D.
,
2009
, “
Monitoring Parameter Change in Time Series Models
,”
J. Multivar. Anal.
,
100
(
4
), pp.
715
725
.
39.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
40.
Guo
,
W.
,
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Jin
,
J. J.
,
Spicer
,
J. P.
, and
Wang
,
H.
,
2016
, “
Online Process Monitoring With Near-Zero Misdetection for Ultrasonic Welding of Lithium-Ion Batteries: An Integration of Univariate and Multivariate Methods
,”
J. Manuf. Syst.
,
38
, pp.
141
150
.
41.
Cai
,
W. W.
,
Kang
,
B.
, and
Hu
,
S. J.
,
2017
,
Ultrasonic Welding of Lithium-Ion Batteries
,
ASME
,
New York
.
You do not currently have access to this content.