The paper describes process development for producing sound, strong, and ductile Nb pipe–316L stainless steel (SS) flange brazed joint suitable for application in superconducting radiofrequency (SRF) cavities. The developed transition joints, made with BVAg-8 braze filler metal (BFM), were free of brittle intermetallic compounds, in contrast to the existing global brazing practice of using oxygen-free electronic copper as BFM which results in the formation of a continuous layer of Fe–Nb brittle intermetallic compound at Nb–braze interface. In view of the large difference in the mean thermal expansion coefficients between niobium and 316L stainless steel, a new design for manufacturing and assembly (DFMA) has been developed to ensure achievement of desired joint thickness with uniformity in circumferential and longitudinal directions. An environment-friendly prebraze cleaning procedure has been qualified and implemented. DFMA has resulted in (i) significant reduction of the out-of-roundness errors (≤10 μm) while machining of the niobium pipe, (ii) simplified clearance fit prebraze assembly at room temperature (RT), and (iii) uniformity of joint thickness. A process flow chart has been developed to ensure repeatability of joint characteristics. The brazed joint, of niobium pipe and 100CF knife edge 316L SS flange made by standardized practice, displayed helium leak tightness better than 5 × 10−10 mbar l/s at RT and at liquid helium temperature (LHT). The braze-joint sustained 873 K/10 h postbraze hydrogen degassing treatment and thermal cycling between RT and LHT without any loss in hermeticity.

References

References
1.
Bhandari
,
R. K.
, and
Roy
,
A.
,
2015
, “
Next-Generation Particle Accelerators for Frontline Research and Wide-Ranging Applications in India—How to Realize Them?
,”
Curr. Sci.
,
108
, pp.
1605
1615
.
2.
Gupta
,
P. D.
,
2013
, “
Particle Accelerators at RRCAT, Indore: Science, Technology and Applications
,”
Indian Nucl. Soc. News
,
10
, pp.
4
7
.
3.
Bonin
,
B.
, and
Röth
,
R. W.
,
1991
, “
Q Degradation of Niobium Cavities Due to Hydrogen Contamination
,”
Proceedings of the Fifth Workshop on RF Superconductivity, DESY
, Hamburg, Germany, Aug. 19–23, pp.
210
244
.
4.
Brandes
,
E. A.
, and
Brook
,
G. B.
, eds.,
2000
,
Smithells Metals Reference Book
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
14.3
14.5
.
5.
Rouby
,
M.
, and
Blanchard
,
P.
,
1993
, “
Physical and Mechanical Properties of Stainless Steels
,”
Stainless Steels
,
P.
Lacombe
,
B.
Baroux
, and
G.
Beranger
, eds.,
Les Editions de Physique Les Ulis
,
Cedex A, France
, p.
139
.
6.
Bacher
,
J. P.
,
Chiaveri
,
E.
, and
Trincat
,
B.
,
1987
, “
Brazing of Niobium to Stainless Steel for UHV Applications in Superconducting Cavities
,”
CERN
Report No. CERN/EF/RF 87-7.
7.
Fuerst
,
J. D.
,
Toter
,
W. F.
, and
Shepard
,
K. W.
,
2003
, “
Niobium to Stainless Steel Braze Transition Development
,” SRF-2013, Lübeck/Travemünde Martim, Germany, Sept. 8–12, pp.
305
307
.
8.
Ristori
,
L.
, and
Toter
,
W.
,
2012
, “
Development at ANL of a Copper Brazed Joint for the Coupling of the Niobium Cavity End Wall to the Stainless Steel Helium Tank in the Fermilab SSR1 Resonator
,”
IPAC-2012
, New Orleans, LA, May 20–25, pp.
2345
2347
.
9.
Poggiani
,
R.
,
2009
, “
Materials and Components of Possible Interest for Cryogenic Operation of Einstein Telescope
,” University of Pisa and INFN Pisa, Technical Note
ET-026-09
, Issue 1.
10.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Redebaugh
,
R.
,
2000
, “
Cryogenic Material Properties Database
,”
11th International Cryocooler Conference
, Keystone, CO, June 20–22, pp.
681
687
.
11.
Van Sciver, S. W., 2010, “
Low Temperature Properties of Materials
,” USPAS Cryogenics Short Course, Boston, accessed Dec. 23, 2014, http://uspas.fnal.gov/materials/10MIT/Lecture_1.2.pdf
12.
Liaw
,
D. W.
, and
Shiue
,
R. K.
,
2005
, “
Brazing of Ti-6Al-4V and Niobium Using Three Silver-Base Braze Alloys
,”
Metall. Mater. Trans. A
,
36
, pp.
2415
2427
.
13.
Kumar
,
A.
,
Ganesh
,
P.
,
Kaul
,
R.
,
Bhatnagar
,
V. K.
,
Yedle
,
K.
,
Ram Sankar
,
P.
,
Sindal
,
B. K.
,
Kumar
,
K. V. A. N. P. S.
,
Singh
,
M. K.
,
Rai
,
S. K.
,
Bose
,
A.
,
Veerbhadraiah
,
T.
,
Ramteke
,
S.
,
Sridhar
,
R.
,
Mundra
,
G.
,
Joshi
,
S. C.
, and
Kukreja
,
L. M.
,
2015
, “
A New Vacuum Brazing Route for Niobium-316l Stainless Steel Transition Joints for Superconducting RF Cavities
,”
J. Mater. Eng. Perform.
,
24
(
2
), pp.
952
963
.
14.
Capatina
,
O.
,
Atieh
,
S.
,
Santillana
,
I. A.
,
Izquierdo
,
G. A.
,
Bonomi
,
R.
,
Calatroni
,
S.
,
Chambrillon
,
J.
,
Gerigk
,
F.
,
Garoby
,
R.
,
Guinchard
,
M.
,
Junginger
,
T.
,
Malabaila
,
M.
,
Ferreira
,
L. M. A.
,
Mikulas
,
S.
,
Parma
,
V.
,
Pillon
,
F.
,
Renaglia
,
T.
,
Schirm
,
K.
,
Tardy
,
T.
,
Therasse
,
M.
,
Vacca
,
A.
,
Alonso
,
N. V.
, and
Craen
,
A. V.
,
2003
, “
CERN Developments for 704 MHz Superconducting Cavities
,” SRF-2013, Lübeck/Travemünde Martim, Germany, Sept. 8–12, pp.
1192
1205
.
15.
Kumar
,
A.
,
Ganesh
,
P.
,
Kaul
,
R.
,
Sindal
,
B. K.
,
Yedle
,
K.
,
Bhatnagar
,
V. K.
,
Ram Sankar
,
P.
,
Singh
,
M. K.
,
Rai
,
S. K.
,
Bose
,
A.
,
Sridhar
,
R.
,
Joshi
,
S. C.
, and
Kukreja
,
L. M.
,
2015
, “
New Brazing Recipe for Ductile Niobium-316L Stainless Steel Joints for SRF Cavities
,”
Weld. J.
,
94
, pp.
241s
249s
.
16.
Sekulić
,
D. P.
, ed.,
2013
,
Advances in Brazing—Science, Technology and Applications
,
Woodhead Publishing
,
Philadelphia, PA
, pp.
3
28
.
17.
Sloboda
,
M. H.
,
1961
,
Design and Strength of Brazed Joints
,
Johnson Matthey
,
London
, p.
5
.
18.
Cverna
,
F.
, ed.,
2002
,
ASM Ready Reference: Thermal Properties of Metals
,
ASM International
,
Materials Park, OH
, p.
166
.
19.
Goetsh
,
D. L.
,
Chalk
,
W. S.
,
Nelson
,
J. A.
, and
Rickman
,
R. L.
,
2005
,
Technical Drawing
,
5th ed.
,
Thomson Delmar Learning
, Clifton, NY, pp.
505
507
.
20.
Casalbuoni
,
S.
,
Knabbe
,
E.-A.
,
Kötzler
,
J.
,
Lilje
,
L.
,
von Sawilski
,
L.
,
Schmüser
,
P.
, and
Steffen
,
B.
, 2004, “
Surface Superconductivity in Niobium for Superconducting RF Cavities
,” TESLA-Report 2004-06, also published as DESY-Report 04-027.
21.
Sankar P. R., 2012, “
Buffered Chemical Polishing of Niobium Half Cells
,”
RRCAT Newsl.
,
25
(
1
), p.
6
.
22.
Fukuda
,
T.
,
Kakeshita
,
T.
, and
Kindo
,
K.
,
2006
, “
Effect of High Magnetic Field and Uniaxial Stress at Cryogenic Temperatures on Phase Stability of Some Austenitic Stainless Steels
,”
Mater. Sci. Eng., A
,
438–440
, pp.
212
217
.
You do not currently have access to this content.