A new electromechanical modulation system designed with piezoelectric stacks for both linear actuation and force sensing functions is described. The system can be adapted for modulation-assisted machining (MAM) drilling processes where a low-frequency (<1000 Hz) sinusoidal oscillation is superimposed directly onto the drilling process, such that the feedrate is modulated. A series of drilling experiments were conducted in Ti6Al4V, 17-4 steel, and Al6061 with the system installed on a CNC machine. The drill displacement, thrust force, and chip morphology were characterized across a range of conventional and MAM drilling conditions. The mechanical response (stiffness) of the system agrees with the design specifications. The system offers new capabilities to control the modulation frequency and amplitude in MAM drilling, while simultaneously measuring the drilling thrust force in real time. The force sensing function enables detection of the intermittent separations between the drill tip and the workpiece surface (occurrence of discrete cutting), providing a method to prescribe and control the modulation conditions necessary for effective MAM drilling. Opportunities for force feedback control and process monitoring in MAM drilling processes are discussed. While the system described emphasizes MAM drilling, the capabilities can be extended to other machining processes.

References

References
1.
SME, 2010, Fundamental Manufacturing Processes Study Guide, DV09PUB3,
Society of Manufacturing Engineers
,
Dearborn, MI
.
2.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Clarendon Press
,
Oxford, UK
.
3.
Guo
,
Y.
,
Mann
,
J. B.
,
Yeung
,
H.
, and
Chandrasekar
,
S.
,
2012
, “
Enhancing Tool Life in High-Speed Machining of Compacted Graphite Iron (CGI) Using Controlled Modulation
,”
Tribol. Lett.
,
47
(
1
), pp.
103
111
.
4.
Okamura
,
K.
,
Sasahara
,
H.
,
Segawa
,
T.
, and
Tsutsumi
,
M.
,
2006
, “
Low-Frequency Vibration Drilling of Titanium Alloy
,”
JSME Int. J. Ser. C.
,
49
(
1
), pp.
76
82
.
5.
Sadek
,
A.
,
Attia
,
M. H.
,
Meshreki
,
M.
, and
Shi
,
B.
,
2013
, “
Characterization and Optimization of Vibration-Assisted Drilling of Fibre Reinforced Epoxy Laminates
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
91
94
.
6.
Pecat
,
O.
, and
Brinksmeier
,
E.
,
2014
, “
Tool Wear Analyses in Low Frequency Vibration Assisted Drilling of CFRP/Ti6Al4V Stack Material
,”
Procedia CIRP
,
14
, pp.
142
147
.
7.
Park
,
K.-H.
,
Beal
,
A.
,
Kim
,
D.-W.
,
Kwon
,
P.
, and
Lantrip
,
J.
,
2013
, “
A Comparative Study of Carbide Tools in Drilling of CFRP and CFRP-Ti Stacks
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
014501
.
8.
Sui
,
J.
,
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2015
, “
Thermal Modeling of Temperature Rise for Bone Drilling With Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061008
.
9.
Zhu
,
L.
,
Jen
,
T.-C.
,
Liu
,
Y.-B.
,
Zhao
,
J.-W.
,
Liu
,
W.-L.
, and
Yen
,
Y.-H.
,
2014
, “
Cutting Tool Life Analysis in Heat-Pipe Assisted Drilling Operations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011008
.
10.
Toews
,
H. G.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
1998
, “
A Study of the Influence of Superimposed Low-Frequency Modulation on the Drilling Process
,”
Precis. Eng.
,
22
(
1
), pp.
1
9
.
11.
Chhabra
,
P. N.
,
Ackroyd
,
B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2002
, “
Low-Frequency Modulation-Assisted Drilling Using Linear Drives
,”
Proc. Inst. Mech. Eng., Part B
,
216
(
3
), pp.
321
330
.
12.
Guibert
,
N.
,
Paris
,
H.
, and
Rech
,
J.
,
2008
, “
A Numerical Simulator to Predict the Dynamical Behavior of the Self-Vibratory Drilling Head
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
644
655
.
13.
Jallageas
,
J.
,
K’nevez
,
J.-Y.
,
Chérif
,
M.
, and
Cahuc
,
O.
,
2012
, “
Modeling and Optimization of Vibration-Assisted Drilling on Positive Feed Drilling Unit
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5
), pp.
1205
1216
.
14.
Mann
,
J. B.
,
Lee
,
S.
, and
Guo
,
Y.
,
2015
, “
Tool Holder Actuator and Real-Time Force Monitoring for Machining Process Control
,” Provisional U.S. Patent Application, June 17.
15.
Mann
,
J. B.
,
Guo
,
Y.
,
Saldana
,
C.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2011
, “
Enhancing Material Removal Processes Using Modulation-Assisted Machining
,”
Tribol. Int.
,
44
(
10
), pp.
1225
1235
.
16.
Mann
,
J. B.
,
Saldana
,
C. J.
,
Guo
,
Y.
,
Yeung
,
H.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2012
, “
Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling
,”
SAE Int. J. Mater. Manuf.
,
6
(
1
), pp.
24
32
.
17.
Mann
,
J. B.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
,
2009
, “
Tool Holder Assembly and Method for Modulation-Assisted Machining
,”
U.S. Patent No. 7,587,965
.
18.
Ladonne
,
M.
,
Cherif
,
M.
,
Landon
,
Y.
,
K’Nevez
,
J.-Y.
,
Cahuc
,
O.
, and
de Castelbajac
,
C.
,
2015
, “
Modelling the Vibration-Assisted Drilling Process: Identification of Influential Phenomena
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9
), pp.
1657
1666
.
19.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
,
2004
, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
297
310
.
You do not currently have access to this content.