The shapes of machined surfaces play a critical role affecting powertrain performance, and therefore, it is necessary to characterize the shapes with high resolution. State-of-the-art approaches for surface shape characterization are mostly data-driven by interpolating and extrapolating the spatial data but its precision is limited by the density of measurements. This paper explores the new opportunity of improving surface shape prediction through considering the similarity of multiple similar manufacturing processes. It is a common scenario when the process of interest lacks sufficient data whereas rich data could be available from other similar-but-not-identical processes. It is reasonable to transfer the insights gained from other relevant processes into the surface shape prediction. This paper develops an engineering-guided multitask learning (EG-MTL) surface model by fusing surface cutting physics in engineering processes and the spatial data from a number of similar-but-not-identical processes. An iterative multitask Gaussian process learning algorithm is developed to learn the model parameters. Compared with the conventional multitask learning, the proposed method has the advantages in incorporating the insights on cutting force variation during machining and is potentially able to improve the prediction performance given limited measurement data. The methodology is demonstrated based on the data from real-world machining processes in an engine plant.

References

References
1.
Willomitzer
,
F.
,
Ettl
,
S.
,
Arold
,
O.
, and
Häusler
,
G.
,
2013
, “
Flying Triangulation—A Motion—Robust Optical 3d Sensor for the Real-Time Shape Acquisition of Complex Objects
,”
AIP Conference Proceeding
, Vol.
1537
, pp.
19
26
.
2.
Zhu
,
X.
,
Ding
,
H.
, and
Wang
,
M. Y.
,
2004
, “
Form Error Evaluation: An Iterative Reweighted Least Squares Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
535
541
.
3.
Yang
,
B.-D.
, and
Menq
,
C.-H.
,
1993
, “
Compensation for Form Error of End-Milled Sculptured Surfaces Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
,
33
(
5
), pp.
725
740
.
4.
Grove
,
D. M.
,
Woods
,
D. C.
, and
Lewis
,
S. M.
,
2004
, “
Multifactor b-Spline Mixed Models in Designed Experiments for the Engine Mapping Problem
,”
J. Qual. Technol.
,
36
(
4
), pp.
380
391
.
5.
D'Errico
,
J. R.
,
2005
, “
Surface Fitting Using Gridfit
,” The MathWorks, Inc., Natick, MA, https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit?requestedDomain=www.mathworks.com
6.
Yang
,
T.-H.
, and
Jackman
,
J.
,
2000
, “
Form Error Estimation Using Spatial Statistics
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
262
272
.
7.
Xia
,
H.
,
Ding
,
Y.
, and
Wang
,
J.
,
2008
, “
Gaussian Process Method for Form Error Assessment Using Coordinate Measurements
,”
IIE Trans.
,
40
(
10
), pp.
931
946
.
8.
Du
,
S.
, and
Fei
,
L.
,
2016
, “
Co-Kriging Method for Form Error Estimation Incorporating Condition Variable Measurements
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041003
.
9.
Bao
,
L.
,
Wang
,
K.
, and
Jin
,
R.
,
2014
, “
A Hierarchical Model for Characterising Spatial Wafer Variations
,”
Int. J. Prod. Res.
,
52
(
6
), pp.
1827
1842
.
10.
Plumlee
,
M.
,
Jin
,
R.
,
Roshan Joseph
,
V.
, and
Shi
,
J.
,
2013
, “
Gaussian Process Modeling for Engineered Surfaces With Applications to SI Wafer Production
,”
Stat
,
2
(
1
), pp.
159
170
.
11.
Wang
,
G.
,
Gertner
,
G.
, and
Anderson
,
A.
,
2005
, “
Sampling Design and Uncertainty Based on Spatial Variability of Spectral Variables for Mapping Vegetation Cover
,”
Int. J. Remote Sens.
,
26
(
15
), pp.
3255
3274
.
12.
Xiao
,
X.
,
Gertner
,
G.
,
Wang
,
G.
, and
Anderson
,
A. B.
,
2005
, “
Optimal Sampling Scheme for Estimation Landscape Mapping of Vegetation Cover
,”
Landscape Ecol.
,
20
(
4
), pp.
375
387
.
13.
Suriano
,
S.
,
Wang
,
H.
,
Shao
,
C.
,
Hu
,
S. J.
, and
Sekhar
,
P.
,
2015
, “
Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations
,”
IIE Trans.
,
47
(
10
), pp.
1033
1052
.
14.
Zhao
,
H.
,
Jin
,
R.
,
Wu
,
S.
, and
Shi
,
J.
,
2011
, “
PDE-Constrained Gaussian Process Model on Material Removal Rate of Wire Saw Slicing Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021012
.
15.
Caruana
,
R.
,
1997
, “
Multitask Learning
,”
Mach. Learn.
,
28
(
1
), pp.
41
75
.
16.
Lawrence
,
N. D.
, and
Platt
,
J. C.
,
2004
, “
Learning to Learn With the Informative Vector Machine
,”
21st International Conference on Machine Learning, ACM
, p.
65
.
17.
Bonilla
,
E. V.
,
Chai
,
K. M.
, and
Williams
,
C.
,
2007
, “
Multi-Task Gaussian Process Prediction
,”
Advances in Neural Information Processing Systems
, pp.
153
160
.
18.
Yu
,
K.
,
Tresp
,
V.
, and
Schwaighofer
,
A.
,
2005
, “
Learning Gaussian Processes From Multiple Tasks
,”
22nd International Conference on Machine Learning, ACM
, pp.
1012
1019
.
19.
Schwaighofer
,
A.
,
Tresp
,
V.
, and
Yu
,
K.
,
2004
, “
Learning Gaussian Process Kernels via Hierarchical Bayes
,”
Advances in Neural Information Processing Systems
, pp.
1209
1216
.
20.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2013
, “
Characterization of Cutting Force Induced Surface Shape Variation in Face Milling Using High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041014
.
21.
Nguyen
,
H. T.
,
Wang
,
H.
,
Tai
,
B. L.
,
Ren
,
J.
,
Hu
,
S. J.
, and
Shih
,
A.
,
2016
, “
High-Definition Metrology Enabled Surface Variation Control by Cutting Load Balancing
,”
ASME J. Manuf. Sci. Eng
,
138
(
2
), p.
021010
.
22.
Nelder
,
J. A.
, and
Baker
,
R.
,
1972
, “
Generalized Linear Models
,”
Encyclopedia of Statistical Sciences
,
Wiley
,
New York, NY
.
23.
Fahrmeir
,
L.
,
Kneib
,
T.
,
Lang
,
S.
, and
Marx
,
B.
,
2013
, “
Generalized Linear Models
,”
Regression
,
Springer
,
Berlin
, pp.
269
324
.
24.
Stein
,
A.
, and
Corsten
,
L.
,
1991
, “
Universal Kriging and Cokriging as a Regression Procedure
,”
Biometrics
, pp.
575
587
.
25.
Atkinson
,
P.
,
Webster
,
R.
, and
Curran
,
P.
,
1992
, “
Cokriging With Ground-Based Radiometry
,”
Remote Sensing of Environment
,
41
(
1
), pp.
45
60
.
26.
Chai
,
K. M.
,
2010
, “
Multi-Task Learning With Gaussian Processes
,” Ph.D. dissertation,
University of Edinburgh, Edinburgh
,
Scotland
.
27.
Ghosn
,
J.
, and
Bengio
,
Y.
,
2003
. “
Bias Learning, Knowledge Sharing
,”
IEEE Transactions on Neural Networks
,
14
(
4
), pp.
748
765
.
28.
Holland
,
P. W.
, and
Welsch
,
R. E.
,
1977
, “
Robust Regression Using Iteratively Reweighted Least-Squares
,”
Commun. Stat. Theory Methods
,
6
(
9
), pp.
813
827
.
29.
Lange
,
K. L.
,
Little
,
R. J.
, and
Taylor
,
J. M.
,
1989
, “
Robust Statistical Modeling Using the t Distribution
,”
J. Am. Stat. Assoc.
,
84
(
408
), pp.
881
896
.
30.
Wainer
,
H.
, and
Thissen
,
D.
,
1976
, “
Three Steps Towards Robust Regression
,”
Psychometrika
,
41
(
1
), pp.
9
34
.
31.
Maronna
,
R.
,
Martin
,
D.
, and
Yohai
,
V.
,
2006
,
Robust Statistics
,
Wiley
,
Chichester
.
32.
Huang
,
S.
,
Li
,
J.
,
Chen
,
K.
,
Wu
,
T.
,
Ye
,
J.
,
Wu
,
X.
, and
Yao
,
L.
,
2012
, “
A Transfer Learning Approach for Network Modeling
,”
IIE Trans.
,
44
(
11
), pp.
915
931
.
33.
Kirkpatrick
,
S.
,
Gelatt
, Jr.,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
34.
Brooks
,
S. P.
, and
Morgan
,
B. J.
,
1995
, “
Optimization Using Simulated Annealing
,”
J. R. Stat. Soc. (The Statistician)
,
44
(
2
), pp.
241
257
.
35.
Hudson
,
G.
, and
Wackernagel
,
H.
,
1994
, “
Mapping Temperature Using Kriging With External Drift: Theory and an Example From Scotland
,”
Int. J. Climatol.
,
14
(
1
), pp.
77
91
.
36.
Bourennane
,
H.
,
King
,
D.
, and
Couturier
,
A.
,
2000
, “
Comparison of Kriging With External Drift and Simple Linear Regression for Predicting Soil Horizon Thickness With Different Sample Densities
,”
Geoderma
,
97
(
3
), pp.
255
271
.
You do not currently have access to this content.