Cobalt chromium is widely used to make medical implants and wind turbine, engine and aircraft components because of its high wear and corrosion resistance. The ability to process geometrically complex components is an area of intense interest to enable shifting from traditional manufacturing techniques to additive manufacturing (AM). The major reason for using AM is to ease design modification and optimization since AM machines can directly apply the changes from an updated STL file to print a geometrically complex object. Quality assurance for AM fabricated parts is recognized as a critical limitation of AM processes. In selective laser melting (SLM), layer by layer melting and remelting can lead to porosity defects caused by lack of fusion, balling, and keyhole collapse. Machine process parameter optimization becomes a very important task and is usually accomplished by producing a large amount of experimental coupons with different combinations of process parameters such as laser power, speed, hatch spacing, and powder layer thickness. In order to save the cost and time of these experimental trial and error methods, many researchers have attempted to simulate defect formation in SLM. Many physics-based assumptions must be made to model these processes, and thus, all the models are limited in some aspects. In the present work, we investigated single bead melt pool shapes for SLM of CoCr to tune the physics assumptions and then, applied to the model to predict bulk lack of fusion porosity within the finished parts. The simulation results were compared and validated against experimental results and show a high degree of correlation.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
, 1st, ed.,
Springer
, Heidelberg, Germany.
2.
Simchi
,
A.
, and
Asgharzadeh
,
H.
,
2004
, “
Densification and Microstructural Evaluation During Laser Sintering of M2 High Speed Steel Powder
,”
Mater. Sci. Technol.
,
20
(
11
), pp.
1462
1468
.
3.
Kempen
,
K.
,
Yasa
,
E.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2011
, “
Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel
,”
Phys. Proc.
,
12
(Part A), pp.
255
263
.
4.
Satoh
,
G.
,
Yao
,
Y. L.
, and
Qiu
,
C.
,
2013
, “
Strength and Microstructure of Laser Fusion-Welded Ti–SS Dissimilar Material Pair
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
469
479
.
5.
Rafi
,
H.
,
Karthik
,
N.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.
6.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
7.
Fu
,
C.
, and
Guo
,
Y.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
8.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
9.
Krakhmalev
,
P.
, and
Yadroitsev
,
I.
,
2014
, “
Microstructure and Properties of Intermetallic Composite Coatings Fabricated by Selective Laser Melting of Ti–SiC Powder Mixtures
,”
Intermetallics
,
46
, pp.
147
155
.
10.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
11.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
,
Teng
,
C.
, and
Stucker
,
B.
,
2015
, “
An Efficient Multi-Scale Simulation Architecture for the Prediction of Performance Metrics of Parts Fabricated Using Additive Manufacturing
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
3852
3863
.
12.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J. J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti–6Al–4V Pre-Alloyed Powder
,”
Solid Freeform Fabrication Symposium
, pp.
256
267
.
13.
Traidia
,
A.
,
2011
, “
Multiphysics Modelling and Numerical Simulation of GTA Weld Pools
,”
Ph.D. thesis
, Ecole Polytechnique X, Palaiseau, France.
14.
Gong
,
H.
,
2013
, “
Generation and Detection of Defects in Metallic Parts Fabricated by Selective Laser Melting and Electron Beam Melting and Their Effects on Mechanical Properties
,”
Ph.D. thesis
, University of Louisville, Louisville, KY.
15.
Körner
,
C.
,
Attar
,
E.
, and
Heinl
,
P.
,
2011
, “
Mesoscopic Simulation of Selective Beam Melting Processes
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
978
987
.
16.
Engeli
,
R.
,
Etter
,
T.
,
Hövel
,
S.
, and
Wegener
,
K.
,
2016
, “
Processability of Different in738lc Powder Batches by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
484l
491
.
17.
Allwood
,
J. M.
,
Childs
,
T. H.
,
Clare
,
A. T.
,
De Silva
,
A. K.
,
Dhokia
,
V.
,
Hutchings
,
I. M.
,
Leach
,
R. K.
,
Leal-Ayala
,
D. R.
,
Lowth
,
S.
, and
Majewski
,
C. E.
,
2016
, “
Manufacturing at Double the Speed
,”
J. Mater. Process. Technol.
,
229
, pp.
729
757
.
18.
Teng
,
C.
,
Ashby
,
K.
,
Plan
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2016
, “
The Effects of Material Property Assumptions on Predicted Meltpool Shape for Laser Powder Bed Fusion Based Additive Manufacturing
,”
J. Meas. Sci. Technol.
,
27
(8), p. 085602.
19.
Pal
,
D.
,
Teng
,
C.
, and
Stucker
,
B.
,
2015b
, “
8 Simulation of Powder-Based Additive Manufacturing Processes
,”
Additive Manufacturing: Innovations, Advances, and Applications
, 1st, ed.,
CRC Press
, Boca Raton, FL.
20.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd, ed.,
Oxford University Press
, Oxford, UK.
21.
Roberts
,
I.
,
Wang
,
C.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf
,
49
(
12
), pp.
916
923
.
22.
Ready
,
J.
,
2012
,
Effects of High-Power Laser Radiation
, 2nd, ed.,
Academic Press
, New York.
23.
Dai
,
K.
, and
Shaw
,
L.
,
2005
, “
Finite Element Analysis of the Effect of Volume Shrinkage During Laser Densification
,”
Acta Mater.
,
53
(
18
), pp.
4743
4754
.
24.
Hashemi
,
H.
, and
Sliepcevich
,
C.
,
1967
, “
A Numerical Method for Solving Two-Dimensional Problems of Heat Conduction With Change of Phase
,”
Chem. Eng. Prog. Symp. Ser.
,
63
, pp.
34
41
.
25.
Poirier
,
D.
, and
Salcudean
,
M.
,
1988
, “
On Numerical Methods Used in Mathematical Modeling of Phase Change in Liquid Metals
,”
ASME J. Heat Transfer
,
110
(
3
), pp.
562
570
.
26.
Dusinberre
,
G.
,
1945
, “
Numerical Methods for Transient Heat Flow
,”
Trans. ASME
,
67
(
8
), pp.
703
712
.
27.
Voller
,
V.
, and
Swaminathan
,
C.
,
1991
, “
Eral Source-Based Method for Solidification Phase Change
,”
Numer. Heat Transfer, Part B Fundamentals
,
19
(
2
), pp.
175
189
.
28.
Eyres
,
N.
,
Hartree
,
D. R.
,
Ingham
,
J.
,
Jackson
,
R.
,
Sarjant
,
R.
, and
Wagstaff
,
J.
,
1946
, “
The Calculation of Variable Heat Flow in Solids
,”
Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci.
,
240
(
813
), pp.
1
57
.
29.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
You do not currently have access to this content.