Ultrasonic metal welding has been used to join multiple layers of battery tabs with the bus bar in lithium-ion battery assembly operations. This paper describes joint performance models for ultrasonic metal welds of multiple layers of dissimilar battery tab materials, i.e., aluminum and copper. Finite element (FE) models are developed to predict the mechanical performance of the ultrasonically welded joints. The models predict peak shear load, energy absorption capability, and failure modes, which are necessary for modeling product performance and defining process requirements for the welds. The models can be adjusted to represent different quality of welds created in conditions of underweld (UW), normal-weld (NW), or overweld (OW) using physical attributes observed through microscopic analysis. The models are validated through lap shear tests, which demonstrate excellent agreement for the maximum force in the NW condition and good agreement for the UW and OW conditions. The models provide in-depth understanding of the relationship among welding process parameters, physical weld attributes, and the weld performance. The models also provide significant insight for further development of ultrasonic welding process for battery tabs and help optimize welding process for more than four-layered joints.

References

References
1.
Lee
,
S. S.
,
Kim
,
H. T.
,
Hu
,
S. J.
,
Cai
,
W. W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.
2.
Li
,
S.
,
Wang
,
H.
,
Lin
,
Y.-T.
,
Abell
,
J.
, and
Hu
,
S. J.
,
2010
, “
Benchmarking of High Capacity Battery Module/Pack Design for Automatic Assembly System
,”
ASME
Paper No. MSEC2010-34114.
3.
Zhou
,
B.
,
Thouless
,
M.
, and
Ward
,
S.
,
2006
, “
Predicting the Failure of Ultrasonic Spot Welds by Pull-Out From Sheet Metal
,”
Int. J. Solids Struct.
,
43
(
25
), pp.
7482
7500
.
4.
Elangovan
,
S.
,
Prakasan
,
K.
, and
Jaiganesh
,
V.
,
2010
, “
Optimization of Ultrasonic Welding Parameters for Copper to Copper Joints Using Design of Experiments
,”
Int. J. Adv. Manuf. Technol.
,
51
(
1–4
), pp.
163
171
.
5.
Kim
,
T.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J.
, and
Abell
,
J.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
17
20
.
6.
Kong
,
C.
,
Soar
,
R.
, and
Dickens
,
P.
,
2003
, “
Characterisation of Aluminium Alloy 6061 for the Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
,
363
(
1
), pp.
99
106
.
7.
Kong
,
C.
,
Soar
,
R.
, and
Dickens
,
P.
,
2004
, “
Optimum Process Parameters for Ultrasonic Consolidation of 3003 Aluminium
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
181
187
.
8.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
,
2005
, “
A Model for Weld Strength in Ultrasonically Consolidated Components
,”
Proc. Inst. Mech. Eng.
,
219
(
1
), pp.
83
91
.
9.
Bakavos
,
D.
, and
Prangnell
,
P. B.
,
2010
, “
Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet
,”
Mater. Sci. Eng., A
,
527
(
23
), pp.
6320
6334
.
10.
Li
,
H.
,
Choi
,
H.
,
Ma
,
C.
,
Zhao
,
J.
,
Jiang
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Microsensors
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051015
.
11.
Zhao
,
J.
,
Li
,
H.
,
Choi
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Insertable Thin Film Thermocouples for In Situ Transient Temperature Monitoring in Ultrasonic Metal Welding of Battery Tabs
,”
J. Manuf. Processes
,
15
(
1
), pp.
136
140
.
12.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.-A.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051013
.
13.
Lee
,
D.
,
Kannatey-Asibu
,
J. E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
14.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2014
, “
Vibrational Energy Loss Analysis of Battery Cu Coupon in Ultrasonic Welding
,”
J. Manuf. Processes
,
16
(
2
), pp.
218
232
.
15.
Lee
,
S. S.
,
Kim
,
T. H.
,
Cai.
,
W.
, and
Abell
,
J. A.
,
2014
, “
Parasitic Vibration Attenuation in Ultrasonic Welding of Battery Tabs
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
181
195
.
16.
Zhao
,
N.
,
Li
,
W.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2014
, “
A Fatigue Life Study of Ultrasonically Welded Lithium-Ion Battery Tab Joints Based on Electrical Resistance
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051003
.
17.
Hong
,
S. H.
,
Sung
,
S.-J.
, and
Pan
,
J.
,
2015
, “
Failure Mode and Fatigue Behavior of Dissimilar Friction Stir Spot Welds in Lap-Shear Specimens of Transformation-Induced Plasticity Steel and Hot-Stamped Boron Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051023
.
18.
Zhou
,
B.
,
Thouless
,
M. D.
, and
Ward
,
S.
,
2005
, “
Determining Mode-I Cohesive Parameters for Nugget Fracture in Ultrasonic Spot Welds
,”
Int. J. Fract.
,
136
(
1–4
), pp.
309
326
.
19.
Cavalli
,
M.
,
Thouless
,
M.
, and
Yang
,
Q.
,
2004
, “
Cohesive-Zone Modeling of the Deformation and Fracture of Weld-Bonded Joints
,”
Weld. J.
,
83
(
4
), pp.
133
139
.
20.
Zhou
,
M.
,
Zhang
,
H.
, and
Hu
,
S. J.
,
2003
, “
Relationships Between Quality and Attributes of Spot Welds
,”
Weld. J.
,
82
(
4
), pp.
72
77
.
21.
Dassault Systems
,
2011
, “
Abaqus Theory Manual (v.6.11)
,”
Dassault Systems
,
Providence, RI
.
22.
Mae
,
H.
,
Teng
,
X.
,
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
Relationships Between Material Ductility and Characteristic Size of Porosity Correlated Before/After Testing of a Cast Aluminum Alloy
,”
J. Solid Mech. Mater. Eng.
,
2
(
7
), pp.
924
942
.
23.
Seeger
,
F.
,
Feucht
,
M.
,
Frank
,
T.
,
Keding
,
B.
, and
Haufe
,
A.
,
2005
, “
An Investigation on Spot Weld Modelling for Crash Simulation With LS-DYNA
,”
4th LS-DYNA User Forum
,
Bamberg
,
Germany
.
24.
Dassault Systems
,
2011
, “
Abaqus Analysis User's Manual (v.6.11)
,”
Dassault Systems
,
Providence, RI
.
25.
Borrvall
,
T.
,
Johansson
,
T.
,
Schill
,
M.
,
Jergeus
,
J.
,
Mattiasson
,
K.
, and
DuBois
,
P.
,
2013
, “
A General Damage Initiation and Evolution Model in LS-DYNA
,”
9th European LS-DYNA Conference
,
Manchester, UK
.
26.
Yu
,
H.
,
Tang
,
Y.
, and
Jeong
,
D.
,
2007
, “
Elastic-Plastic Failure Finite Element Analyses of Railroad Tank Car Heads in Impact
,”
ABAQUS Users Conference
.
27.
Zhou
,
Q.
,
Wu
,
X.
,
Xia
,
Y.
, and
Cai
,
W.
,
2014
, “
Spot Weld Layout Optimization of Tube Crash Performance With Manufacturing Constraints
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011014
.
28.
2005
, “
Abaqus, Lecture 9, Material Damage and Failure
.”
29.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2015
,
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
You do not currently have access to this content.